ਦੋ ਘਾਤੀ ਫੰਕਸ਼ਨ

ਵਿਕੀਪੀਡੀਆ, ਇੱਕ ਅਜ਼ਾਦ ਗਿਆਨਕੋਸ਼ ਤੋਂ
ਇਸ ’ਤੇ ਜਾਓ: ਨੇਵੀਗੇਸ਼ਨ, ਖੋਜ
x^2 - x - 2\! (ਪੈਰਾਬੋਲਾ)

ਦੋ ਘਾਤੀ ਬਹੁਪਦ ਗਣਿਤ ਵਿੱਚ ਇੱਕ ਬਹੁਪਦ ਹੈ ਜਿਸ ਨੂੰ ਹੇਠ ਲਿਖੇ ਢੰਗ ਨਾਲ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

f(x)=ax^2+bx+c,\quad a \ne 0.[੧] ਦੋ ਘਾਤੀ ਬਹੁਪਦ ਦਾ ਗਰਾਫ ਇੱਕ ਪੈਰਾਬੋਲਾ ਹੈ ਜਿਸ ਦੀ ਧੂਰੀ y-axis ਦੇ ਸਮਾਂਨਅੰਤਰ ਹੈ।
ax^2+bx+c, ਬਹੁਪਦ ਦੀ ਡਿਗਰੀ 2 ਹੈ ਕਿਉਂਕਿ x ਦੀ ਘਾਤ 2 ਹੈ। ਜੇ ਬਹੁਪਦ ਨੂੰ ਸਿਫਰ ਦੇ ਬਰਾਬਰ ਕਰ ਦਿਤਾ ਜਾਂਵੇ ਤਾਂ ਇਸ ਨੂੰ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸ ਦੇ ਹੱਲ ਨੂੰ ਇਸ ਦੇ ਮੂਲ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਉਦਾਹਰਣ[ਸੋਧੋ]

  • 5+ay^2
  • 4y+5y^2
  • 6-y-6y^2
  • 4x^2+4x+1,

ਮੂਲ[ਸੋਧੋ]

ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ

f(x) = ax^2+bx+c\, ਦੇ ਮੂਲ ਉਹ ਹਨ ਜਿਸ ਤੇ ਸਮੀਕਰਨ ਦਾ f(x)=0 ਹੋ ਜਾਵੇ ਜਦੋਂ ਗੁਣਾਕ a, b ਅਤੇ c ਵਾਸਤਵਿਕ ਜਾਂ ਕੰਪਲੈਕਸ ਹੋਣ ਤਾਂ ਮੂਲ ਹੋਣਗੇ:
x=\frac{-b \pm \sqrt{\Delta}}{2 a},

ਜਿਥੇ ਡਿਸਕ੍ਰਿਮੀਨੈਂਟ ਨੂੰ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ:

\Delta = b^2 - 4 a c \, .

ਹਵਾਲੇ