ਬਟੇਨੁਮਾ ਸੰਖਿਆ: ਰੀਵਿਜ਼ਨਾਂ ਵਿਚ ਫ਼ਰਕ

ਵਿਕੀਪੀਡੀਆ, ਇੱਕ ਅਜ਼ਾਦ ਗਿਆਨਕੋਸ਼ ਤੋਂ
ਸਮੱਗਰੀ ਮਿਟਾਈ ਸਮੱਗਰੀ ਜੋੜੀ
ਛੋ Babanwalia ਨੇ ਸਫ਼ਾ ਪਰਿਮੇਯ ਸੰਖਿਆ ਨੂੰ ਬਟੇਨੁਮਾ ਸੰਖਿਆ ’ਤੇ ਭੇਜਿਆ
No edit summary
ਲਾਈਨ 1: ਲਾਈਨ 1:
'''ਪਰਿਮੇਯ ਸੰਖਿਆ''' ਦੇ ਸੰਗ੍ਰਹਿ ਨੂੰ <math>\mathbb{Q}</math> ਨਾਲ ਪ੍ਰਗਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਅੰਗਰੇਜ਼ੀ ਵਿੱਚ rational number ਕਹਿੰਦੇ ਹਨ। rational ਦੀ ਉਤਪਤੀ 'ratio' ਸ਼ਬਦ ਤੋਂ ਹੋਈ ਹੈ ਅਤੇ <math>\mathbb{Q}</math> ਅੰਗਰੇਜ਼ੀ ਸ਼ਬਦ quotient ਤੋਂ ਲਿਆ ਗਿਆ ਹੈ।<ref>Rosen, Kenneth (2007). Discrete Mathematics and its Applications (6th ed.). New York, NY: McGraw-Hill. pp. 105,158–160.</ref>
'''ਬਟੇਨੁਮਾ ਸੰਖਿਆ''' ਜਾਂ '''ਅਨੁਪਾਤਕ ਸੰਖਿਆ''' ਉਹ ਸੰਖਿਆ ਹੁੰਦੀ ਹੈ ਜਿਹਨੂੰ "ਬਟੇ" ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੋਵੇ। ਅਜਿਹੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਜੁੱਟ ਨੂੰ <math>\mathbb{Q}</math> ਨਾਲ ਪ੍ਰਗਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਅੰਗਰੇਜ਼ੀ ਵਿੱਚ ''rational number'' ਕਹਿੰਦੇ ਹਨ। rational ਦੀ ਉਤਪਤੀ 'ratio' ([[ਅਨੁਪਾਤ]]) ਸ਼ਬਦ ਤੋਂ ਹੋਈ ਹੈ ਅਤੇ <math>\mathbb{Q}</math> ਅੰਗਰੇਜ਼ੀ ਸ਼ਬਦ quotient ([[ਵੰਡਫਲ]]) ਤੋਂ ਲਿਆ ਗਿਆ ਹੈ।<ref>Rosen, Kenneth (2007). Discrete Mathematics and its Applications (6th ed.). New York, NY: McGraw-Hill. pp. 105,158–160.</ref>
==ਪ੍ਰੀਭਾਸ਼ਾ==
==ਪ੍ਰੀਭਾਸ਼ਾ==
ਸੰਖਿਆ '''r''' ਨੂੰ ਪਰਿਮੇਯ ਸੰਖਿਆ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਜੇ ਇਸਨੂੰ <math>\frac{p}{q}</math> ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੋਵੇ, ਜਿੱਥੇ '''p''' ਅਤੇ '''q''' ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਹਨ। ਅਤੇ ''q'' ≠ 0<br/>
ਸੰਖਿਆ '''r''' ਨੂੰ ਬਟੇਨੁਮਾ ਸੰਖਿਆ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਜੇ ਇਸਨੂੰ <math>\frac{p}{q}</math> ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੋਵੇ, ਜਿੱਥੇ '''p''' ਅਤੇ '''q''' ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਹਨ। ਅਤੇ ''q'' ≠ 0<br/>
ਜਿਵੇ <math>\frac{2}{3}</math>, <math>\frac{-56}{67}</math>, <math>\frac{9}{11}</math>, <math>\frac{4}{1}</math>··············
ਜਿਵੇ <math>\frac{2}{3}</math>, <math>\frac{-56}{67}</math>, <math>\frac{9}{11}</math>, <math>\frac{4}{1}</math>··············
==ਵਿਸ਼ੇਸ਼==
==ਵਿਸ਼ੇਸ਼==
ਸਾਰੀਆਂ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਹਨ। ਕਿਉਂਕੇ '''-6''' ਨੂੰ <math>\frac{-6}{1}</math> ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਇਹ ਦੇਖਦੇ ਹਾਂ ਕਿ ਪਰੇਮੇਯ ਸੰਖਿਆਵਾਂ ਵਿੱਚ [[ਪ੍ਰਾਕਿ੍ਰਤਿਕ ਸੰਖਿਆ|ਪ੍ਰਾਕਿ੍ਰਤਿਕ ਸੰਖਿਆਵਾਂ]], [[ਪੂਰਨ ਸੰਖਿਆ|ਪੂਰਨ ਸੰਖਿਆਵਾਂ]] ਅਤੇ [[ਸੰਪੂਰਨ ਸੰਖਿਆ|ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ]] ਵੀ ਆਉਂਦੀਆਂ ਹਨ।<ref>Gilbert, Jimmie; Linda, Gilbert (2005). Elements of Modern Algebra (6th ed.). Belmont, CA: Thomson Brooks/Cole. pp. 243–244.</ref>
ਸਾਰੀਆਂ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਹਨ। ਕਿਉਂਕੇ '''-6''' ਨੂੰ <math>\frac{-6}{1}</math> ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਇਹ ਦੇਖਦੇ ਹਾਂ ਕਿ ਪਰੇਮੇਯ ਸੰਖਿਆਵਾਂ ਵਿੱਚ [[ਗਿਣਤੀ ਦੇ ਅੰਕ|ਗਿਣਤੀ ਦੇ ਅੰਕ]], [[ਪੂਰਨ ਸੰਖਿਆ|ਪੂਰਨ ਸੰਖਿਆਵਾਂ]] ਅਤੇ [[ਸੰਪੂਰਨ ਸੰਖਿਆ|ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ]] ਵੀ ਆਉਂਦੀਆਂ ਹਨ।<ref>Gilbert, Jimmie; Linda, Gilbert (2005). Elements of Modern Algebra (6th ed.). Belmont, CA: Thomson Brooks/Cole. pp. 243–244.</ref>
==ਅੰਕਗਣਿਤ==
==ਅੰਕਗਣਿਤ==


===ਬਟੇਨੁਮਾ ਬਰਾਬਰਤਾ===
===ਪਰਿਮੇਯ ਬਰਾਬਰ===
ਪਰਿਮੇਯ ਬਰਾਬਰ ਹੋਣਗੇ ਜੇ :<math>\frac{a}{b} = \frac{c}{d}</math> ਸਿਰਫ ਤੇ ਸਿਰਫ <math>ad = bc.</math>
ਬਟੇਨੁਮਾ ਉਦੋਂ ਬਰਾਬਰ ਹੋਣਗੇ ਜੇ :<math>\frac{a}{b} = \frac{c}{d}</math> ਸਿਰਫ਼ ਤੇ ਸਿਰਫ਼ <math>ad = bc.</math>
:ਜਿਵੇ
:ਜਿਵੇ
:<math>\frac{1}{3} = \frac{2}{6}</math>
:<math>\frac{1}{3} = \frac{2}{6}</math>
ਲਾਈਨ 14: ਲਾਈਨ 14:
:<math>\frac{0}{1} = \frac{0}{2}</math>
:<math>\frac{0}{1} = \frac{0}{2}</math>


===ਕ੍ਰਮ===
===ਤਰਤੀਬ===
ਜਦੋਂ ਦੋਨੇ ਹੀ '''ਹਰ''' ਧਨ ਦੇ ਹੋਣ
ਜਦੋਂ ਦੋਹੇਂ ਹੀ '''ਹਰ''' ਧਨ ਦੇ ਹੋਣ
:<math>\frac{a}{b} < \frac{c}{d}</math> ਸਿਰਫ ਤੇ ਸਿਰਫ <math>ad < bc.</math>
:<math>\frac{a}{b} < \frac{c}{d}</math> ਸਿਰਫ਼ ਤੇ ਸਿਰਫ਼ <math>ad < bc.</math>


ਜੇ ਦੋਨੋ '''ਹਰ''' ਰਿਣ ਦਾ ਹੋਣੇ ਤਾਂ ਦੋਨੋ ਅੰਸ਼ ਨੂੰ ਧਨ ਦਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
ਜੇ ਦੋਹੇਂ '''ਹਰ''' ਰਿਣ ਦਾ ਹੋਣੇ ਤਾਂ ਦੋਹੇਂ ਅੰਸ਼ ਨੂੰ ਧਨ ਦਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
:<math>\frac{-a}{-b} = \frac{a}{b}</math>
:<math>\frac{-a}{-b} = \frac{a}{b}</math>
ਅਤੇ
ਅਤੇ
ਲਾਈਨ 24: ਲਾਈਨ 24:


===ਜੋੜ===
===ਜੋੜ===
ਦੋ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਨੂੰ ਹੇਠ ਲਿਖੇ ਤਰੀਕੇ ਨਾਲ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ।
ਦੋ ਬਟੇਨੁਮਾ ਸੰਖਿਆਵਾਂ ਨੂੰ ਹੇਠ ਲਿਖੇ ਤਰੀਕੇ ਨਾਲ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ।
:<math>\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}.</math>
:<math>\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}.</math>


ਲਾਈਨ 34: ਲਾਈਨ 34:
:<math>\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.</math>
:<math>\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.</math>


===ਵੰਡ ਕਰਨਾ===
===ਵੰਡ ਕਰਨੀ===
ਜਿਥੇ ''c'' ≠ 0:
ਜਿਥੇ ''c'' ≠ 0:
:<math>\frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc}.</math>
:<math>\frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc}.</math>


===ਪਰਿਮੇਯ ਦਾ ਉਲਟਾ===
===ਬਟੇਨੁਮਾ ਦਾ ਉਲਟਾ===
ਜੋੜਕ ਉਲਟਾ ਅਤੇ ਗੁਣਕ ਉਲਟਾ ਦੋਨੋ ਹੀ ਸੰਭਵ ਹਨ।
ਜੋੜਕ ਉਲਟਾ ਅਤੇ ਗੁਣਕ ਉਲਟਾ ਦੋਹੇਂ ਹੀ ਸੰਭਵ ਹਨ।
:<math> - \left( \frac{a}{b} \right) = \frac{-a}{b} = \frac{a}{-b} \quad\mbox{and}\quad
:<math> - \left( \frac{a}{b} \right) = \frac{-a}{b} = \frac{a}{-b} \quad\mbox{and}\quad
\left(\frac{a}{b}\right)^{-1} = \frac{b}{a} \mbox{ if } a \neq 0. </math>
\left(\frac{a}{b}\right)^{-1} = \frac{b}{a} \mbox{ if } a \neq 0. </math>


===ਪਰਿਮੇਯ ਦੀ ਘਾਤ ਅੰਕ===
===ਬਟੇਨੁਮਾ ਦੀ ਘਾਤ ਅੰਕ===
ਜੇ ''n'' ਨਨ-ਰਿਣਾਤਮਿਕ ਪਰਿਮੇਯ ਹੈ ਤਾਂ
ਜੇ ''n'' ਨਨ-ਰਿਣਾਤਮਿਕ ਪਰਿਮੇਯ ਹੈ ਤਾਂ
:<math>\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}</math>
:<math>\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}</math>

02:53, 6 ਸਤੰਬਰ 2014 ਦਾ ਦੁਹਰਾਅ

ਬਟੇਨੁਮਾ ਸੰਖਿਆ ਜਾਂ ਅਨੁਪਾਤਕ ਸੰਖਿਆ ਉਹ ਸੰਖਿਆ ਹੁੰਦੀ ਹੈ ਜਿਹਨੂੰ "ਬਟੇ" ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੋਵੇ। ਅਜਿਹੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਜੁੱਟ ਨੂੰ ਨਾਲ ਪ੍ਰਗਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਅੰਗਰੇਜ਼ੀ ਵਿੱਚ rational number ਕਹਿੰਦੇ ਹਨ। rational ਦੀ ਉਤਪਤੀ 'ratio' (ਅਨੁਪਾਤ) ਸ਼ਬਦ ਤੋਂ ਹੋਈ ਹੈ ਅਤੇ ਅੰਗਰੇਜ਼ੀ ਸ਼ਬਦ quotient (ਵੰਡਫਲ) ਤੋਂ ਲਿਆ ਗਿਆ ਹੈ।[1]

ਪ੍ਰੀਭਾਸ਼ਾ

ਸੰਖਿਆ r ਨੂੰ ਬਟੇਨੁਮਾ ਸੰਖਿਆ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਜੇ ਇਸਨੂੰ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੋਵੇ, ਜਿੱਥੇ p ਅਤੇ q ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਹਨ। ਅਤੇ q ≠ 0
ਜਿਵੇ , , , ··············

ਵਿਸ਼ੇਸ਼

ਸਾਰੀਆਂ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਹਨ। ਕਿਉਂਕੇ -6 ਨੂੰ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਇਹ ਦੇਖਦੇ ਹਾਂ ਕਿ ਪਰੇਮੇਯ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਗਿਣਤੀ ਦੇ ਅੰਕ, ਪੂਰਨ ਸੰਖਿਆਵਾਂ ਅਤੇ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਵੀ ਆਉਂਦੀਆਂ ਹਨ।[2]

ਅੰਕਗਣਿਤ

ਬਟੇਨੁਮਾ ਬਰਾਬਰਤਾ

ਬਟੇਨੁਮਾ ਉਦੋਂ ਬਰਾਬਰ ਹੋਣਗੇ ਜੇ : ਸਿਰਫ਼ ਤੇ ਸਿਰਫ਼

ਜਿਵੇ

ਤਰਤੀਬ

ਜਦੋਂ ਦੋਹੇਂ ਹੀ ਹਰ ਧਨ ਦੇ ਹੋਣ

ਸਿਰਫ਼ ਤੇ ਸਿਰਫ਼

ਜੇ ਦੋਹੇਂ ਹਰ ਰਿਣ ਦਾ ਹੋਣੇ ਤਾਂ ਦੋਹੇਂ ਅੰਸ਼ ਨੂੰ ਧਨ ਦਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਅਤੇ

ਜੋੜ

ਦੋ ਬਟੇਨੁਮਾ ਸੰਖਿਆਵਾਂ ਨੂੰ ਹੇਠ ਲਿਖੇ ਤਰੀਕੇ ਨਾਲ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ।

ਘਟਾਓ

ਗੁਣਾ ਕਰਨਾ

ਗੁਣਾ ਕਰਨ ਦਾ ਨਿਯਮ ਹੈ:

ਵੰਡ ਕਰਨੀ

ਜਿਥੇ c ≠ 0:

ਬਟੇਨੁਮਾ ਦਾ ਉਲਟਾ

ਜੋੜਕ ਉਲਟਾ ਅਤੇ ਗੁਣਕ ਉਲਟਾ ਦੋਹੇਂ ਹੀ ਸੰਭਵ ਹਨ।

ਬਟੇਨੁਮਾ ਦੀ ਘਾਤ ਅੰਕ

ਜੇ n ਨਨ-ਰਿਣਾਤਮਿਕ ਪਰਿਮੇਯ ਹੈ ਤਾਂ

ਅਤੇ (ਜੇ a ≠ 0):

  1. Rosen, Kenneth (2007). Discrete Mathematics and its Applications (6th ed.). New York, NY: McGraw-Hill. pp. 105,158–160.
  2. Gilbert, Jimmie; Linda, Gilbert (2005). Elements of Modern Algebra (6th ed.). Belmont, CA: Thomson Brooks/Cole. pp. 243–244.