ਸਾਈਨ-ਜੌਰਡਨ ਸਮੀਕਰਨ
Jump to navigation
Jump to search
ਸਾਈਨ-ਜੌਰਡਨ ਇਕੁਏਸ਼ਨ, 1+1 ਅਯਾਮਾਂ ਅੰਦਰ, ਇੱਕ ਗੈਰ-ਰੇਖਿਕ ਹਾਈਪਰਬੋਲਿਕ ਅੰਸ਼ਿਕ ਡਿੱਫਰੈਂਸ਼ੀਅਲ ਸਮੀਕਰਨ ਹੈ, ਜਿਸ ਵਿੱਚ ਡੀ’ਅਲਬ੍ਰਟ ਓਪਰੇਟਰ ਅਤੇ ਅਗਿਆਤ ਫੰਕਸ਼ਨ ਦਾ ਸਾਈਨ ਸ਼ਾਮਿਲ ਹੁੰਦੇ ਹਨ। ਇਹ ਮੌਲਿਕ ਤੌਰ ਤੇ ਐਡਮੰਡ ਬੂਰ (1862) ਦੁਆਰਾ 3-ਸਪੇਸ ਅੰਦਰ ਕਰਵੇਚਰ -1 ਦੀਆਂ ਸਤਹਿਾਂ ਲਈ ਗੌੱਸ-ਕੋਡਾੱਜ਼ੀ ਇਕੁਏਸ਼ਨ ਦੇ ਤੌਰ ਤੇ ਸਥਿਰ ਨੈਗਟਿਵ ਕਰਵੇਚਰ ਦੇ ਅਧਿਐਨ ਦੇ ਕੋਰਸ ਵਿੱਚ ਪੇਸ਼ ਕੀਤੀ ਗਈ ਸੀ, ਅਤੇ ਕ੍ਰਿਸਟਲ ਵਿਸਥਾਪਨਾਂ ਦੇ ਅਧਿਐਨ ਦੌਰਾਨ ਫ੍ਰੈਂਕਲ ਅਤੇ ਕੋਂਟੋਰੋਵਾ (1939) ਦੁਆਰਾ ਦੁਬਾਰਾ ਖੋਜੀ ਗਈ ਸੀ। ਇਸ ਸਮੀਕਰਨ ਨੇ 1970ਵੇਂ ਦਹਾਕੇ ਵਿੱਚ ਬਹੁਤ ਸਾਰਾ ਧਿਆਨ ਖਿੱਚਿਆ ਜਿਸਦਾ ਕਾਰਣ ਸੌਲੀਟੌਨ ਹੱਲਾਂ ਦੀ ਮੌਜੂਦਗੀ ਸੀ।
ਸਮੀਕਰਨ ਦਾ ਮੁੱਢ ਅਤੇ ਇਸਦਾ ਨਾਮ[ਸੋਧੋ]
ਸੌਲੀਟੌਨ ਹੱਲ[ਸੋਧੋ]
1-ਸੌਲੀਟੌਨ ਹੱਲ[ਸੋਧੋ]
2-ਸੌਲੀਟੌਨ ਹੱਲ[ਸੋਧੋ]
3-ਸੌਲੀਟੌਨ ਹੱਲ[ਸੋਧੋ]
ਬਲਾਂ ਵਾਲੇ ਇੱਕ ਸੌਲੀਟੌਨ ਦੀ FDTD (1D) ਵੀਡੀਓ ਬਣਾਵਟ[ਸੋਧੋ]
ਸਬੰਧਤ ਸਮੀਕਰਨਾਂ[ਸੋਧੋ]
ਕੁਆਂਟਮ ਵਰਜ਼ਨ[ਸੋਧੋ]
ਸੀਮਤ ਘਣਫਲ ਅੰਦਰ ਅਤੇ ਇੱਕ ਅੱਧੀ ਰੇਖਾ ਉੱਤੇ[ਸੋਧੋ]
ਸੁੱਪਰਸਮਿੱਟ੍ਰਿਕ ਸਾਈਨ-ਜੌਰਡਨ ਮਾਡਲ[ਸੋਧੋ]
ਇਹ ਵੀ ਦੇਖੋ[ਸੋਧੋ]
ਹਵਾਲੇ[ਸੋਧੋ]
ਬਾਹਰੀ ਲਿੰਕ[ਸੋਧੋ]
- sine-Gordon equation at EqWorld: The World of Mathematical Equations.
- Sinh-Gordon Equation at EqWorld: The World of Mathematical Equations.
- sine-Gordon equation at NEQwiki, the nonlinear equations encyclopedia.