ਕ੍ਰਮਗੁਣਿਤ
ਦਿੱਖ
n | n! |
---|---|
0 | 1 |
1 | 1 |
2 | 2 |
3 | 6 |
4 | 24 |
5 | 120 |
6 | 720 |
7 | 5040 |
8 | 40320 |
9 | 362880 |
10 | 3628800 |
11 | 39916800 |
12 | 479001600 |
13 | 6227020800 |
14 | 87178291200 |
15 | 1307674368000 |
16 | 20922789888000 |
17 | 355687428096000 |
18 | 6402373705728000 |
19 | 121645100408832000 |
20 | 2432902008176640000 |
25 | 1.551121004×1025 |
50 | 3.041409320×1064 |
70 | 1.197857167×10100 |
100 | 9.332621544×10157 |
450 | 1.733368733×101,000 |
1000 | 4.023872601×102,567 |
3249 | 6.412337688×1010,000 |
10000 | 2.846259681×1035,659 |
25206 | 1.205703438×101,00,000 |
100000 | 2.824229408×104,56,573 |
205023 | 2.503898932×1010,00,004 |
1000000 | 8.263931688×1055,65,708 |
10100 |
ਕ੍ਰਮਗੁਣਿਤ ਜਿਸ ਨੂੰ ਅੰਗਰੇਜ਼ੀ ਵਿੱਚ factorial ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਇਸ ਨੂੰ n! ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਜਿਸ ਅੰਕ ਦਾ ਕ੍ਰਮਗੁਣਿਤ ਕਰਨਾ ਹੋਵੇ ਉਸ ਅੰਕ ਤੋਂ ਲੱਗ ਕੇ 1 ਤੱਕ ਦੇ ਘਟਦੇ ਕਰਮ ਵਿੱਚ ਸਾਰੇ ਧਨਾਤਮਿਕ ਪੂਰਨ ਅੰਕਾ ਨੂੰ ਗੁਣਾ ਕਰਨ ਤੇ ਜੋ ਸੰੰਖਿਆ ਪ੍ਰਪਤ ਹੁੰਦੀ ਹੈ ਉਸ ਨੂੰ ਉਸ ਅੰਕ ਦਾ ਕ੍ਰਮਗੁਣਿਤ ਿਕਹਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਦੀ ਵਰਤੋਂ ਗਣਿਤ ਦੀਆਂ ਵੱਖ ਵੱਖ ਉਪ-ਵਿਸਿਆਂ ਿਵੱਚ ਹੁੰਦੀ ਹੈ।ਜਿਵੇ:
0! (ਸਿਫ਼ਰ ਦਾ ਕ੍ਰਮਗੁਣਿਤ), 1 (ਇਕ) ਹੁੰਦਾ ਹੈ।[1]
ਇਤਿਹਾਸ
[ਸੋਧੋ]ਭਾਰਤੀ ਗਣਿਤ ਵਿਗਿਆਨੀਆਂ ਨੇ ਇਸ ਦੀ ਵਰਤੋਂ 12ਵੀਂ ਸਦੀ ਵਿੱਚ ਕੀਤੀ।[2] ਕ੍ਰਮਗੁਣਿਤ ਦਾ ਚਿੰਨ੍ਹ n! ਨੂੰ ਫ੍ਰਾਂਸ ਗਿਣਤ ਵਿਗਿਆਨੀ ਕ੍ਰਿਸਟੀਅਨ ਕਰੈਪ ਨੇ 1808 ਵਿੱਚ ਪੇਸ਼ ਕੀਤਾ।[3]
ਪ੍ਰੀਭਾਸ਼ਾ
[ਸੋਧੋ]ਇਸ ਨੂੰ ਆਮ ਤੌਰ 'ਤੇ ਗੁਣਾ ਦੇ ਤੌਰ 'ਤੇ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ।
ਸ਼ੁਰੂਆਤ ਪੂਰਨ ਅੰਕ n ≥ 1 ਲਈ ਫਾਰਮੁਲੇ ਹੇਠ ਲਿਖੇ ਹਨ।
- .
ਉਦਾਹਰਣ:
0!
[ਸੋਧੋ]ਇਸ ਲਈ
ਹਵਾਲੇ
[ਸੋਧੋ]- ↑ Ronald L. Graham, Donald E. Knuth, Oren Patashnik (1988) Concrete Mathematics, Addison-Wesley, Reading MA. ISBN 0-201-14236-8, p. 111
- ↑ N. L. Biggs, The roots of combinatorics, Historia Math. 6 (1979) 109−136
- ↑ Lua error in ਮੌਡਿਊਲ:Citation/CS1 at line 3162: attempt to call field 'year_check' (a nil value). says Krempe though.