ਕੰਪਲੈਕਸ ਕੰਜੂਗੇਟ
Jump to navigation
Jump to search

ਕੰਪਲੈਕਸ ਪਲੇਨ ਵਿੱਚ z ਅਤੇ ਇਸ ਦੇ ਕੰਪਲੈਕਸ ਕੰਜੂਗੇਟ z̅ ਦੀ ਰੇਖਾਗਣਿਤਿਕ ਪ੍ਰਸਤੁਤੀ। ਕੰਪਲੈਕਸ ਕੰਜੂਗੇਟ ਨੂੰ ਵਾਸਤਵਿਕ ਧੁਰੇ ਦੁਆਲੇ z ਨੂੰ ਪਰਿਵਰਤਿਤ ਕਰ ਕੇ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ
ਗਣਿਤ ਵਿੱਚ, ਕਿਸੇ ਕੰਪਲੈਕਸ ਨੰਬਰ ਦਾ ਕੰਪਲੈਕਸ ਕੰਜੂਗੇਟ ਉਹ ਨੰਬਰ ਹੁੰਦਾ ਹੈ ਜਿਸਦਾ ਵਾਸਤਵਿਕ ਹਿੱਸਾ ਅਤੇ ਕਾਲਪਨਿਕ ਹਿੱਸਾ ਮਾਤਰਾ ਵਿੱਚ ਆਪਣੇ ਮੂਲ ਕੰਪਲੈਕਸ ਨੰਬਰ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ ਪਰ ਕਾਲਪਨਿਕ ਹਿੱਸਾ ਉਲਟ ਚਿੰਨ੍ਹ ਵਾਲਾ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ 'ਤੇ, 3 + 4i ਦਾ ਕੰਪਲੈਕਸ ਕੰਜੂਗੇਟ 3 − 4i ਹੁੰਦਾ ਹੈ।
ਪੋਲਰ ਰੂਪ ਵਿੱਚ, ਦਾ ਕੰਪਲੈਕਸ ਕੰਜੂਗੇਟ ਹੁੰਦਾ ਹੈ। ਇਸਨੂੰ ਇਲੁਰ ਦੇ ਫਾਰਮੂਲੇ ਦੀ ਵਰਤੋ ਕਰ ਕੇ ਸਾਬਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
ਕੰਪਲੈਕਸ ਕੰਜੂਗੇਟ ਪੌਲੀਨੌਮੀਅਲਾਂ ਦੇ ਰੂਟਸ ਖੋਜਣ ਲਈ ਮਹੱਤਵਪੂਰਨ ਹਨ। ਕੰਪਲੈਕਸ ਕੰਜੂਗੇਟ ਰੂਟ ਥਿਊਰਮ ਮੁਤਾਬਿਕ, ਜੇਕਰ ਇੱਕ ਕੰਪਲੈਕਸ ਨੰਬਰ, ਇੱਕ ਅਸਥਿਰਾਂਕ ਨਾਲ ਵਾਸਤਵਿਕ ਗੁਣਾਂਕਾਂ ਵਿੱਚ ਕਿਸੇ ਪੌਲੀਨੌਮੀਅਲ ਦਾ ਇੱਕ ਰੂਟ ਹੋਵੇ (ਜਿਵੇਂ ਕੁਆਡ੍ਰੈਟਿਕ ਇਕੁਏਸ਼ਨ ਜਾਂ ਕਿਊਬਿਕ ਇਕੁਏਸ਼ਨ), ਤਾਂ ਇਸ ਦਾ ਕੰਜੂਗੇਟ ਵੀ ਇੱਕ ਰੂਟ ਹੁੰਦਾ ਹੈ।