ਗੇਜ ਥਿਊਰੀ

ਵਿਕੀਪੀਡੀਆ, ਇੱਕ ਅਜ਼ਾਦ ਗਿਆਨਕੋਸ਼ ਤੋਂ
ਇਸ ਉੱਤੇ ਜਾਓ: ਨੇਵੀਗੇਸ਼ਨ, ਖੋਜ

ਭੌਤਿਕ ਵਿਗਿਆਨ ਵਿੱਚ, ਗੇਜ ਥਿਊਰੀ ਫੀਲਡ ਥਿਊਰੀ ਦੀ ਇੱਕ ਅਜਿਹੀ ਕਿਸਮ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਸਥਾਨਿਕ (ਲੋਕਲ) ਪਰਿਵਰਤਨਾਂ ਦੇ ਇੱਕ ਨਿਰੰਤਰ ਗਰੁੱਪ ਅਧੀਨ ਲਗਰਾਂਜੀਅਨ ਇਨਵੇਰੀਅੰਟ (ਸਥਿਰ) ਰਹਿੰਦਾ ਹੈ।

ਸ਼ਬਦ ਗੇਜ ਲਗਰਾਂਜੀਅਨ ਵਿੱਚ ਅਜ਼ਾਦੀ ਦੀਆਂ ਅਤਿਰਿਕਤ ਡਿਗਰੀਆਂ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦਾ ਹੈ। ਸੰਭਵ ਗੇਜਾਂ ਦਰਮਿਆਨ ਪਰਿਵਰਤਨ, ਜਿਹਨਾਂ ਨੂੰ ਗੇਜ ਪਰਿਵਰਤਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਇੱਕ ਲਾਈ ਗਰੁੱਪ ਰਚਦੇ ਹਨ- ਜਿਸ ਵੱਲ ਨੂੰ ਥਿਊਰੀ ਦਾ ਸਮਿੱਟਰੀ ਗਰੁੱਪ ਜਾਂ ਗੇਜ ਗਰੁੱਪ ਇਸ਼ਾਰਾ ਕਰਦਾ ਹੈ। ਕਿਸੇ ਵੀ ਲਾਈ ਗਰੁੱਪ ਨਾਲ ਗਰੁੱਪ ਜਨਰੇਟਰਾਂ ਦਾ ਸਬੰਧਤ ਲਾਈ ਅਲਜਬਰਾ ਹੁੰਦਾ ਹੈ। ਹਰੇਕ ਗਰੁੱਪ ਜਨਰੇਟਰ ਵਾਸਤੇ ਇੱਕ ਸਬੰਧਤ ਵੈਕਟਰ ਫੀਲਡ ਪੈਦਾ ਹੁੰਦੀ ਹੈ ਜਿਸਨੂੰ ਗੇਜ ਫੀਲਡ ਕਹਿੰਦੇ ਹਨ। ਲਗਰਾਂਜੀਅਨ ਵਿੱਚ ਗੇਜ ਫੀਲਡਾਂ ਸ਼ਾਮਿਲ ਕੀਤੀਆਂ ਗਈਆਂ ਹਨ ਤਾਂ ਜੋ ਸਥਾਨਿਕ ਸਮੂਹ ਪਰਿਵਰਤਨਾਂ ਅਧੀਨ ਇਸਦੀ ਸਥਿਰਤਾ ਯਕੀਨੀ ਰਹੇ (ਜਿਸਨੂੰ ਗੇਜ ਇਨਵੇਰੀਅੰਸ ਕਹਿੰਦੇ ਹਨ)। ਜਦੋਂ ਅਜਿਹੀ ਕੋਈ ਥਿਊਰੀ ਨੂੰ ਕੁਆਂਟਾਇਜ਼ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਗੇਜ ਫੀਲਡਾਂ ਦੇ ਕੁਆਂਟਿਆਂ ਨੂੰ ਗੇਜ ਬੋਸੌਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਜੇਕਰ ਸਮਿੱਟਰੀ ਗਰੁੱਪ ਗੈਰ-ਵਟਾਂਦਰਾਤਮਿਕ (ਨੌਨ-ਕਮਿਊਟੇਟਿਵ) ਹੋਵੇ, ਤਾਂ ਗੇਜ ਥਿਊਰੀ ਨੂੰ ਗੈਰ-ਅਬੇਲੀਅਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਜਿਸਦੀ ਆਮ ਉਦਾਹਰਨ ਯਾਂਗ-ਮਿਲਜ਼ ਥਿਊਰੀ ਹੈ।

ਇਤਿਹਾਸ ਅਤੇ ਮਹੱਤਤਾ[ਸੋਧੋ]

ਵਿਵਰਣ[ਸੋਧੋ]

ਸੰਸਾਰਿਕ ਅਤੇ ਸਥਾਨਿਕ ਸਮਰੂਪਤਾਵਾਂ[ਸੋਧੋ]

ਸੰਸਾਰਿਕ ਸਮਰੂਪਤਾਵਾਂ ਦੀ ਉਦਾਹਰਨ[ਸੋਧੋ]

ਸਥਾਨਿਕ ਸਮਰੂਪਤਾਵਾਂ ਦਰਸਾਉਣ ਲਈ ਫਾਈਬਰ ਬੰਡਲਾਂ ਦੀ ਵਰਤੋਂ[ਸੋਧੋ]

ਗੇਜ ਫੀਲਡਾਂ[ਸੋਧੋ]

ਭੌਤਿਕੀ ਪ੍ਰਯੋਗ[ਸੋਧੋ]

ਨਿਰੰਤ੍ਰਤਾ ਥਿਊਰੀਆਂ[ਸੋਧੋ]

ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀਆਂ[ਸੋਧੋ]

ਕਲਾਸੀਕਲ ਗੇਜ ਥਿਊਰੀ[ਸੋਧੋ]

ਕਲਾਸੀਕਲ ਇਲੈਕਟ੍ਰੋਮੈਗਨਟਿਜ਼ਮ[ਸੋਧੋ]

ਇੱਕ ਉਦਾਹਰਨ: ਸਕੇਲਰ O(n) ਗੇਜ ਥਿਊਰੀ[ਸੋਧੋ]

ਗੇਜ ਫੀਲਡ ਲਈ ਯਾਂਗ-ਮਿਲਜ਼ ਲਗਰਾਂਜੀਅਨ[ਸੋਧੋ]

ਇੱਕ ਉਦਾਹਰਨ: ਇਲੈਕਟ੍ਰੋਡਾਇਨਾਮਿਕਸ[ਸੋਧੋ]

ਗਣਿਤਿਕ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ[ਸੋਧੋ]

ਗੇਜ ਥਿਊਰੀਆਂ ਦੀ ਕੁਆਂਟਾਇਜ਼ੇਸ਼ਨ[ਸੋਧੋ]

ਤਰੀਕੇ ਅਤੇ ਉਦੇਸ਼[ਸੋਧੋ]

ਵਿਸੰਗਤੀਆਂ[ਸੋਧੋ]

ਸ਼ੁੱਧ ਗੇਜ[ਸੋਧੋ]