ਚੇਰਨ-ਸਿਮਨਸ ਥਿਊਰੀ

ਵਿਕੀਪੀਡੀਆ, ਇੱਕ ਅਜ਼ਾਦ ਗਿਆਨਕੋਸ਼ ਤੋਂ
(ਚੇਰਨ-ਸਿਮਨਸ ਮਾਡਲ ਤੋਂ ਰੀਡਿਰੈਕਟ)
Jump to navigation Jump to search

ਚੇਰਨ-ਸਮਿਨਸ ਥਿਊਰੀ, ਜਿਸਦਾ ਨਾਮ ਸ਼ੀਂਗ-ਸ਼ੇਨ ਚੇਰਨ ਅਤੇ ਜੇਮਸ ਹੈਰਿਸ ਸਿਮਨਸ ਦੇ ਨਾਮ ਤੋਂ ਰੱਖਿਆ ਗਿਆ ਹੈ, ਐਡਵਰਡ ਵਿੱਟਨ ਦੁਆਰਾ ਵਿਕਸਿਤ ਕੀਤੀ ਗਈ ਸ਼ਵਾਰਜ਼ ਕਿਸਮ ਦੀ 3-ਅਯਾਮੀ ਟੌਪੌਲੌਜੀਕਲ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਹੈ। ਇਸਦਾ ਨਾਮ ਇਸ ਗੱਲ ਤੋਂ ਵੀ ਰੱਖਿਆ ਗਿਆ ਹੈ ਕਿਉਂਕਿ ਇਸਦਾ ਐਕਸ਼ਨ ਚੇਰਨ-ਸਿਮਨਸ 3-ਫੌਰਮ ਦੇ ਇੰਟਗ੍ਰਲ ਦੇ ਅਨੁਪਾਤ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।

ਸੰਘਣੇ ਪਦਾਰਥ ਵਾਲੀ ਭੌਤਿਕ ਵਿਗਿਆਨ ਵਿੱਚ, ਚੇਰਨ-ਸਿਮਨਸ ਥਿਊਰੀ ਫ੍ਰੈਕਸ਼ਨਲ ਕੁਆਂਟਮ ਹਾਲ ਇੱਫੈਕਟ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਟੌਪੌਲੌਜੀਕਲ ਕ੍ਰਮ ਦਰਸਾਉਂਦੀ ਹੈ। ਗਣਿਤ ਵਿੱਚ, ਇਸਦੀ ਵਰਤੋਂ ਜੋਨਸ ਪੌਲੀਨੋਮੀਅਲ ਵਰਗੇ ਤਿੰਨ-ਮੈਨੀਫੋਲਡ ਇਨਵੇਰੀਅੰਟਾਂ ਅਤੇ ਨੌਟ ਇਨਵੇਰੀਅੰਟਾਂ ਦਾ ਹਿਸਾਨ ਲਗਾਉਣ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਰਹੀ ਹੈ।

ਵਿਸ਼ੇਸ਼ ਤੌਰ 'ਤੇ, ਚੇਰਨ-ਸਿਮਨਸ ਥਿਊਰੀ ਨੂੰ ਸਰਲ ਲਾਈ ਗਰੁੱਪ G ਦੀ ਚੋਣ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ ਜਿਸਨੂੰ ਥਿਊਰੀ ਦਾ ਗੇਜ ਗਰੁੱਪ ਕਹਿੰਦੇ ਹਨ ਅਤੇ ਇੱਕ ਨੰਬਰ ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ ਜਿਸਨੂੰ ਥਿਊਰੀ ਦਾ ਲੈਵਲ ਕਹਿੰਦੇ ਹਨ, ਜੋ ਐਕਸ਼ਨ ਨਾਲ ਗੁਣਾਂ ਹੋਣ ਵਾਲਾ ਸਥਿਰਾਂਕ ਹੁੰਦਾ ਹੈ। ਐਕਸ਼ਨ ਗੇਜ ਤੇ ਨਿਰਭਰ ਹੁੰਦਾ ਹੈ, ਫੇਰ ਵੀ ਕੁਆਂਟਮ ਥਿਊਰੀ ਦਾ ਪਾਰਟੀਸ਼ਨ ਫੰਕਸ਼ਨ ਉਦੋਂ ਚੰਗੀ ਤਰਾਂ ਪਰਿਭਾਸ਼ਿਤ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਲੈਵਲ ਇੱਕ ਪੂਰਨ ਅੰਕ ਹੁੰਦਾ ਹੈ ਅਤੇ ਗੇਜ ਫੀਲਡ ਤਾਕਤ 3-ਅਯਾਮੀ ਸਪੇਸਟਾਈਮ ਦੀਆਂ ਸਾਰੀਆਂ ਸੀਮਾਵਾਂ ਉੱਤੇ ਮੁੱਕ ਜਾਂਦੀ ਹੈ।

ਕਲਾਸੀਕਲ ਥਿਊਰੀ[ਸੋਧੋ]

ਗਣਿਤਿਕ ਮੂਲ[ਸੋਧੋ]

ਬਣਤਰਾਂ[ਸੋਧੋ]

ਡਾਇਨਾਮਿਕਸ[ਸੋਧੋ]

ਕੁਆਂਟਾਇਜ਼ੇਸ਼ਨ[ਸੋਧੋ]

ਨਿਰੀਖਣਯੋਗ[ਸੋਧੋ]

ਵਿਲਸਨ ਲੂਪ[ਸੋਧੋ]

HOMFLY ਅਤੇ ਜੋਨਸ ਪੌਲੀਨੋਮੀਅਲ[ਸੋਧੋ]

ਹੋਰ ਥਿਊਰੀਆਂ ਨਾਲ ਸਬੰਧ[ਸੋਧੋ]

ਟੌਪੌਲੌਜੀਕਲ ਸਟਰਿੰਗ ਥਿਊਰੀਆਂ[ਸੋਧੋ]

WZW ਅਤੇ ਮੈਟ੍ਰਿਕਸ ਮਾਡਲ[ਸੋਧੋ]

ਚੇਰਨ-ਸਮਿਨਸ, ਕੋਡਾਮਾ ਵੇਵਫੰਕਸ਼ਨ ਅਤੇ ਲੂਪ ਕੁਆਂਟਮ ਗ੍ਰੈਵਿਟੀ[ਸੋਧੋ]

ਚੇਰਨ-ਸਿਮਨਸ ਗ੍ਰੈਵਿਟੀ ਥਿਊਰੀ[ਸੋਧੋ]

ਚੇਰਨ-ਸਿਮਨਸ ਮੈਟਰ ਥਿਊਰੀਆਂ[ਸੋਧੋ]

ਹੋਰ ਥਿਊਰੀਆਂ ਵਿੱਚ ਚੇਰਨ-ਸਮਿਨਸ ਰਕਮਾਂ[ਸੋਧੋ]

ਲੈਵਲ ਦਾ ਇੱਕ-ਲੂਪ ਪੁਨਰ-ਮਾਨਕੀਕਰਨ[ਸੋਧੋ]