ਸਪੇਸਟਾਈਮ
Part of a series on |
ਸਪੇਸਟਾਈਮ |
---|
ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ |
ਭੌਤਿਕ ਵਿਗਿਆਨ ਵਿੱਚ, ਸਪੇਸਟਾਈਮ (ਸਪੇਸ-ਟਾਈਮ, ਸਪੇਸ ਟਾਈਮ ਜਾਂ ਸਪੇਸ-ਟਾਈਮ ਨਿਰੰਤਰਤਾ) ਇੱਕ ਗਣਿਤਿਕ ਮਾਡਲ ਹੈ ਜੋ ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਨੂੰ ਇੱਕੋ ਅੰਦਰੂਨੀ ਤੌਰ ਤੇ ਬੁਣੀ ਹੋਈ ਨਿਰੰਤਰਤਾ ਵਿੱਚ ਮਿਲਾਉਂਦਾ ਹੈ। ਸਾਡੇ ਬ੍ਰਹਿਮੰਡ ਦਾ ਸਪੇਸਟਾਈਮ ਆਮਤੌਰ ਤੇ ਇੱਕ ਯੁਕਲਿਡੀਅਨ ਸਪੇਸ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਤੋਂ ਲਿਆ ਜਾਂਦਾ ਹੈ, ਜੋ ਸਪੇਸ ਨੂੰ ਤਿੰਨ ਅਯਾਮਾਂ ਦੀ ਬਣੀ ਹੋਈ, ਅਤੇ ਟਾਈਮ ਨੂੰ ਇੱਕ ਅਯਾਮ ਦਾ ਬਣਿਆ ਹੋਇਆ ਚੌਥੇ ਅਯਾਮ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਉਂਦਾ ਹੈ। ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਨੂੰ ਮਿੰਕੋਵਸਕੀ ਸਪੇਸ ਦੇ ਰੂਪ ਵਿੱਚ ਇੱਕ ਸਿੰਗਲ ਮੈਨੀਫੋਲਡ ਵਿੱਚ ਮੇਲਦੇ ਹੋਏ, ਭੌਤਿਕ ਵਿਗਿਆਨੀਆਂ ਨੇ ਮਹਤੱਵਪੂਰਨ ਤਰੀਕੇ ਨਾਲ ਬਹੁਤ ਸਾਰੀਆਂ ਭੌਤਿਕੀ ਥਿਊਰੀਆਂ ਸਰਲ ਬਣਾਈਆਂ ਹਨ, ਅਤੇ ਸੁੱਪਰਗਲੈਕਟਿਕ (ਅਕਾਸ਼ੀ) ਅਤੇ ਸੂਖਮ, ਦੋਹਾਂ ਪੱਧਰਾਂ ਉੱਤੇ ਬ੍ਰਹਿਮੰਡ ਦੀ ਕਾਰਜਪ੍ਰਣਾਲੀ ਦਾ ਇੱਕ ਹੋਰ ਇੱਕਸਾਰ ਤਰੀਕੇ ਨਾਲ ਵਿਵਰਣ ਦਿੱਤਾ ਹੈ।
ਗੈਲੀਲੀਅਨ ਰਿਲੇਟੀਵਿਟੀ ਤੋਂ ਸਾਪੇਖਿਕ ਗਤੀ ਦੀ ਸ਼ੁਰੂਆਤੀ ਧਾਰਨਾ, ਜੋ ਇਹ ਗੱਲ ਪਕੜੀਂ ਬੈਠੀ ਸੀ ਕਿ ਬ੍ਰਹਿਮੰਡ ਦੀ 3 D ਸ਼ਕਲ ਟਾਈਮ ਤੋਂ ਵੱਖਰੀ ਹੈ, ਨੂੰ ਸੋਧਦੇ ਹੋਏ ਅਲਬ੍ਰਟ ਆਈਨਸਟਾਈਨ ਦੀ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਥਿਊਰੀ ਨੇ 1905 ਵਿੱਚ ਸਪੇਸ ਦੀਆਂ ਤਿੰਨ ਡਾਇਮੈਨਸ਼ਨਾਂ ਅਤੇ ਸਮੇਂ ਦੀ ਇੱਕ ਡਾਇਮੈਨਸ਼ਨ ਨੂੰ ਕਾਇਨੇਮੈਟਿਕਸ ਨਾਲ ਅੰਦਰੂਨੀ ਤੌਰ ਤੇ ਬੁਣਿਆ ਦਰਸਾਇਆ। ਵੱਖਰੀਆਂ ਇਨ੍ਰਸ਼ੀਅਲ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ ਨਾਲ ਸਾਪੇਖਿਕ ਗਤੀ ਵਿੱਚ ਔਬਜ਼ਰਵਰਾਂ (ਦਰਸ਼ਕਾਂ) ਦੁਆਰਾ ਇਹ ਸਬੰਧਤ ਵੇਰਵੇ ਖਾਲੀ ਸਪੇਸ ਰਾਹੀਂ ਇੱਕ ਸਥਿਰ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਦੇ ਵਾਅਦੇ ਉੱਤੇ ਬੁਨਿਆਦਬੱਧ ਕੀਤੇ ਗਏ ਸਨ।
1908 ਵਿੱਚ, ਹਰਮਾੱਨ ਮਿੱਕੋਵਸਕੀ ਨੇ ਆਈਨਸਟਾਈਨ ਦੇ ਕੰਮ ਨੂੰ ਹੋਰ ਫੈਲਾਓਂਦੇ ਹੋਏ, ਸਪੇਸਟਾਈਮ ਦੀ ਇੱਕ ਰੇਖਾਗਣਿਤਿਕ ਵਿਆਖਿਆ ਪੇਸ਼ ਕੀਤੀ, ਜਿਸ ਵਿੱਚ ਉਸਨੇ ਆਈਨਸਟਾਈਨ ਦੇ ਮਾਡਲ ਨੂੰ ਇੱਕ ਸਿੱਗਲ ਚਾਰ-ਅਯਾਮੀ ਨਿਰੰਤ੍ਰਤਾ ਦੇ ਸਪੇਸਟਾਈਮ ਘਟਨਾਵਾਂ ਦੀ ਇੱਕ ਏਕੀਕ੍ਰਿਤ ਵੈਕਟਰ ਸਪੇਸ ਵਿੱਚ ਘੋਲ਼ ਦਿੱਤਾ ਜਿਸ ਨੂੰ ਹੁਣ ਮਿੰਕੋਵਸਕੀ ਸਪੇਸ ਦੇ ਤੌਰ ਤੇ ਜਾਣਿਆ ਜਾਂਦਾ ਹੇ- ਜੋ ਓਸ ਚੀਜ਼ ਦੀ ਉਦਾਹਰਨ ਹੈ ਜਿਸਨੂੰ ਗਣਿਤਸ਼ਾਸਤਰੀ ਹੁਣ ਇੱਕ 4‑ਅਯਾਮੀ ਮੈਨੀਫੋਲਡ ਪੁਕਾਰਦੇ ਹਨ। ਇਸ ਮਾਡਲ ਦਾ ਰੇਖਾਗਣਿਤਿਕ ਲੱਛਣ ਸਪੇਸਟਾਈਮ ਅੰਤ੍ਰਾਲ ਦੀ ਧਾਰਨਾ ਵਿੱਚ ਜੜਿਆ ਹੈ, ਜੋ ਮੈਨੀਫੋਲਡ ਉੱਤੇ ਦੂਰੀ ਨੂੰ ਨਾਪਦਾ ਹੈ। ਆਈਨਸਟਾਈਨ ਨੇ ਹੋਰ ਅੱਗੇ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਥਿਊਰੀ ਵਿੱਚ ਵਕ੍ਰਿਤ ਸਪੇਸਟਾਈਮ ਦੀ ਅਪਣੀ ਜਾਣ-ਪਛਾਣ ਨਾਲ ਸਪੇਸਟਾਈਮ ਦੀ ਧਾਰਨਾ ਵਿਕਸਿਤ ਕੀਤੀ। ਹੋਰ ਅਜੋਕੇ ਕੰਮ ਨੇ ਵੀ ਕੁਆਂਟਾਇਜ਼ੇਸ਼ਨ ਰਾਹੀਂ ਸਪੇਸਟਾਈਮ ਨੂੰ ਇੱਕ ਡਿਸਕ੍ਰੀਟ (ਅਨਿਰੰਤਰ) ਲੱਛਣ ਦਿੱਤਾ ਹੈ।
ਜਾਣ-ਪਛਾਣ
[ਸੋਧੋ]
ਪਰਿਭਾਸ਼ਾਵਾਂ
[ਸੋਧੋ]ਇੱਕ ਸੰਖੇਪ ਸਾਰਾਂਸ਼ ਹਿੱਸੇ ਲਈ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ
ਨੋਟ: ਮੋਬਾਈਲ ਵਰਤੋਂਕਾਰਾਂ ਨੂੰ ਪਹਿਲੀ ਵਾਰ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ਾਂ ਨੂੰ ਕ੍ਰਿਆਸ਼ੀਲ ਕਰਨ ਵਾਸਤੇ ਅੰਦਰੂਨੀ ਵਿਕੀਲਿੰਕਾਂ ਦੇ ਚੰਗੀ ਤਰਾਂ ਕੰਮ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ-ਪਹਿਲਾਂ ਇੱਕ ਨਵਾਂ ਟੈਬ ਖੋਲਣ ਵਾਸਤੇ ਦੱਬ ਕੇ ਰੱਖਣ ਦੀ ਜਰੂਰਤ ਪੈ ਸਕਦੀ ਹੈ.[note 1]
ਗੈਰ-ਰੀਲੇਟੀਵਿਸਟਿਕ ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਸਮੇਂ ਨੂੰ ਨਾਪ ਦੀ ਇੱਕ ਵਿਆਪਕ ਮਾਤਰਾ ਵਜੋਂ ਮਾਪਦਾ ਹੈ ਜੋ ਕਿ ਸਾਰੀ ਥਾਂ ਤੇ ਇੱਕਸਾਰ ਹੈ ਅਤੇ ਜੋ ਸਪੇਸ ਤੋਂ ਵੱਖਰੀ ਹੈ। ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਮੰਨਦਾ ਹੈ ਕਿ ਸਮਾਂ ਬੀਤਣ ਦੀ ਇੱਕ ਸਥਿਰ ਦਰ ਹੈ ਜੋ ਕਿਸੇ ਨਿਰੀਖਕ ਦੀ ਗਤੀ ਜਾਂ ਇਸ ਤੋਂ ਬਾਹਰਲੀ ਕੋਈ ਚੀਜ਼ ਤੋਂ ਸੁਤੰਤਰ ਹੁੰਦੀ ਹੈ[1] ਇਸ ਤੋਂ ਇਲਾਵਾ, ਇਹ ਮੰਨਦਾ ਹੈ ਕਿ ਸਪੇਸ ਯੂਕਲਿਡਨ ਹੈ, ਅਰਥਾਤ, ਇਹ ਮੰਨਦਾ ਹੈ ਕਿ ਸਪੇਸ ਆਮ ਸਮਝ ਦੀ ਰੇਖਾ-ਗਣਿਤ ਦੀ ਪਾਲਣਾ ਕਰਦੀ ਹੈ.[2] ਸਪੈਸ਼ਲ ਰੀਲੇਟੀਵਿਟੀ ਦੇ ਸੰਦਰਭ ਵਿੱਚ, ਸਮਾਂ ਸਪੇਸ ਦੇ ਤਿੰਨ ਖੇਤਰਾਂ ਤੋਂ ਵੱਖ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ, ਕਿਉਂਕਿ ਜਿਸ ਦਰ ਦੁਆਰਾ ਇਕ ਵਸਤੂ ਦੇ ਲਈ ਗੁਜ਼ਰਦਾ ਹੈ, ਉਹ ਆਬਜੈਕਟ ਦੇ ਗਤੀ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ ਜੋ ਦਰਸ਼ਕ ਦੇ ਸਾਪੇਖਿਕ ਹੁੰਦੀ ਹੈ
ਗੈਰ-ਰੀਲੇਟੀਵਿਸਟਿਕ ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਸਮੇਂ ਨੂੰ ਨਾਪ ਦੀ ਇੱਕ ਵਿਆਪਕ ਮਾਤਰਾ ਵਜੋਂ ਮਾਪਦਾ ਹੈ ਜੋ ਕਿ ਸਾਰੀ ਥਾਂ ਤੇ ਇੱਕਸਾਰ ਹੈ ਅਤੇ ਜੋ ਸਪੇਸ ਤੋਂ ਵੱਖਰੀ ਹੈ। ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਮੰਨਦਾ ਹੈ ਕਿ ਸਮਾਂ ਬੀਤਣ ਦੀ ਇੱਕ ਸਥਿਰ ਦਰ ਹੈ ਜੋ ਕਿਸੇ ਨਿਰੀਖਕ ਦੀ ਗਤੀ ਜਾਂ ਇਸ ਤੋਂ ਬਾਹਰਲੀ ਕੋਈ ਚੀਜ਼ ਤੋਂ ਸੁਤੰਤਰ ਹੁੰਦੀ ਹੈ[3] ਇਸ ਤੋਂ ਇਲਾਵਾ, ਇਹ ਮੰਨਦਾ ਹੈ ਕਿ ਸਪੇਸ ਯੂਕਲਿਡਨ ਹੈ, ਅਰਥਾਤ, ਇਹ ਮੰਨਦਾ ਹੈ ਕਿ ਸਪੇਸ ਆਮ ਸਮਝ ਦੀ ਰੇਖਾ-ਗਣਿਤ ਦੀ ਪਾਲਣਾ ਕਰਦੀ ਹੈ.[4], ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ, ਇਸਦੇ ਨਾਲ ਨਾਲ, ਇਸ ਗੱਲ ਦੀ ਇੱਕ ਸਮਝ ਮੁਹੱਈਆ ਕਰਵਾਉਂਦੀ ਹੈ ਕਿ ਕਿਵੇਂ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡਾਂ ਫੀਲਡ ਦੇ ਬਾਹਰ ਦੇ ਕਿਸੇ ਔਬਜ਼ਰਵਰ ਦੁਆਰਾ ਦੇਖੇ ਜਾਣ ਤੇ ਕਿਸੇ ਚੀਜ਼ ਦੇ ਵਕਤ ਦੇ ਲਾਂਘੇ ਨੂੰ ਧੀਮਾ ਕਰ ਦਿੰਦੀਆਂ ਹਨ।
ਗਣਿਤਿਕ ਤੌਰ ਤੇ, ਸਪੇਸਟਾਈਮ ਇੱਕ ਮੈਨੀਫੋਲਡ ਹੁੰਦਾ ਹੈ, ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਇਹ ਇੱਕ ਟੌਪੌਲੌਜੀਕਲ ਸਪੇਸ ਹੁੰਦੀ ਹੈ ਜੋ ਸਥਾਨਿਕ ਤੌਰ ਤੇ ਹਰੇਕ ਬਿੰਦੂ ਦੇ ਨਜ਼ਦੀਕ ਯੁਕਿਲਡਨ ਸਪੇਸ ਨਾਲ ਮਿਲਦੀ ਜੁਲਦੀ ਹੁੰਦੀ ਹੈ। ਸਮਾਨਤਾ (ਤੁੱਲਤਾ) ਮੁਤਾਬਿਕ, ਬਹੁਤ ਸੂਖਮ ਪੈਮਾਨਿਆਂ ਉੱਤੇ, ਕੋਈ ਗੋਲਬ ਪੱਧਰਾ (ਫਲੈਟ) ਦਿਸਦਾ ਹੈ।[5] ਬਹੁਤ ਜਿਆਦਾ ਵਿਸ਼ਾਲ ਪੱਧਰ ਦੇ ਪੈਮਾਨੇ (ਫੈਕਟਰ) ਉੱਤੇ, (ਪ੍ਰੰਪ੍ਰਿਕ ਤੌਰ ਤੇ ਜਿਸ ਨੂੰ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਕਿਹਾ ਜਾਂਦਾ ਹੈ) ਸਪੇਸ ਵਿੱਚ ਨਾਪੇ ਜਾਂਦੇ ਡਿਸਟੈਂਸ (ਦੂਰੀ) ਨੂੰ, ਵਕਤ ਵਿੱਚ ਨਾਪੇ ਜਾਣ ਵਾਲੀਆਂ ਦੂਰੀਆਂ ਨਾਲ ਸਬੰਧਤ ਕਰਦੀ ਹੈ। ਇਸ ਸਕੇਲ (ਪੈਮਾਨੇ) ਫੈਕਟਰ (ਹਿੱਸੇ) ਦਾ ਮੈਗਨੀਟਿਊਡ (ਮੁੱਲ) (ਸਪੇਸ ਵਿੱਚ ਤਕਰੀਬਨ 3,00,000 km ਜੋ ਵਕਤ ਅੰਦਰ 1 ਸਕਿੰਟ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ), ਜਿਸਦੇ ਨਾਲ ਇਹ ਸੱਚਾਈ ਜੁੜੀ ਹੁੰਦੀ ਹੈ ਕਿ ਸਪੇਸਟਾਈਮ ਦਾ ਇੱਕ ਮੈਨੀਫੋਲਡ (ਬਹੁ-ਪਰਤ) ਹੋਣਾ ਇਹ ਅਰਥ ਰੱਖਦਾ ਹੈ ਕਿ, ਸਧਾਰਨ, ਗੈਰ-ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਸਪੀਡਾਂ ਅਤੇ ਸਧਾਰਨ, ਇਨਸਾਨੀ-ਪੈਮਾਨੇ ਦੀਆਂ ਦੂਰੀਆਂ ‘ਤੇ, ਬਹੁਤ ਤੁੱਛ ਹੀ ਅਜਿਹਾ ਹੁੰਦਾ ਹੈ ਜੋ ਇਨਸਾਨ ਦੇਖ ਸਕਦੇ ਹਨ ਜੋ ਓਸ ਦੇਖੇ ਜਾਣ ਵਾਲੇ ਤੋਂ ਬਹੁਤ ਵੱਖਰਾ ਹੋ ਸਕਦਾ ਹੋਵੇਗਾ ਜੇਕਰ ਸੰਸਾਰ ਯੁਕਿਲਡਨ ਕਿਸਮ ਦਾ ਹੁੰਦਾ। ਅਜਿਹਾ ਸਿਰਫ ਮੱਧ-1800ਵੇਂ ਦਹਾਕੇ ਵਿੱਚ ਦੇ ਸੰਵੇਦਨਸ਼ੀਲ ਵਿਗਿਆਨਿਕ ਨਾਪਾਂ, ਜਿਵੇਂ ਫਿਜ਼ੀਆਊ ਐਕਸਪੈਰੀਮੈਂਟ ਅਤੇ ਮਾਈਕਲਸਨ-ਮੋਰਲੇਅ ਐਕਸਪੈਰੀਮੈਂਟ ਦੀ ਕਾਢ ਨਾਲ ਹੀ ਹੋਇਆ ਸੀ ਕਿ ਯੁਕਿਲਡਨ ਸਪੇਸ ਦੀ ਅਸਪੱਸ਼ਟ ਧਾਰਨਾ ਉੱਤੇ ਅਧਾਰਿਤ ਅਨੁਮਾਨਾਂ ਦੇ ਬਨਾਮ ਨਿਰੀਖਣ ਦਰਮਿਆਨ ਬੁੱਝਾਰਤ ਭਰੀ ਬੇਮੇਲਤਾ (ਅੰਤਰ) ਨੋਟ ਕੀਤੀ ਜਾਣੀ ਸ਼ੁਰੂ ਹੋ ਗਈ ਸੀ।[6]
ਚੀਜ਼ਾਂ ਜੋ ਸਪੇਸਟਾਈਮ ਵਿੱਚ ਵਾਪਰਦੀਆਂ ਹਨ ਘਟਨਾਵਾਂ ਕਹੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਇੱਕ ਘਟਨਾ ਉਹ ਚੀਜ਼ ਹੁੰਦੀ ਹੈ ਜੋ ਸਪੇਸਟਾਈਮ ਅੰਦਰ ਕਿਸੇ ਇਕਲੌਤੇ (ਸਿੰਗਲ) ਬਿੰਦੂ ਉੱਤੇ ਤੁਰੰਤ ਵਾਪਰਦੀ ਹੈ, ਜੋ “ਕੋ-ਆਰਡੀਨੇਟ ਸਿਸਟਮ” ਦੇ ਨਿਰਦੇਸ਼ਾਂਕਾਂ x, y, z ਅਤੇ t ਦੇ ਇੱਕ ਸੈੱਟ ਦੁਆਰਾ ਪ੍ਰਸਤੁਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਘਟਨਾਵਾਂ ਨਾ ਤਾਂ ਵਕਤ ਵਿੱਚ ਅਰਸਾ (ਡਿਊਰੇਸ਼ਨ) ਰੱਖਦੀਆਂ ਹਨ, ਨਾ ਹੀ ਸਪੇਸ ਵਿੱਚ ਕੋਈ ਪਲ ਰੱਖਦੀਆਂ ਹਨ। ਸਾਪੇਖਿਕਤਾ ਦੀਆਂ ਪ੍ਰਸਿੱਧ ਪ੍ਰਦ੍ਰਸ਼ਨੀਆਂ ਵਿੱਚ ਘਟਨਾਵਾਂ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਨ ਲਈ ਖਾਸਤੌਰ ਤੇ ਵਰਤੇ ਜਾਂਦੇ ਸ਼ਬਦ- ਸਪਾਰਕ (ਚਿੰਗਾਰੀਆਂ), ਪਟਾਕੇ, ਰੋਸ਼ਨੀ ਵਾਲੇ ਬੰਬ ਅਤੇ ਹੋਰ ਮਿਲਦੀਆਂ ਜੁਲਦੀਆਂ ਚੀਜ਼ਾਂ- ਘਟਨਾਵਾਂ ਨਹੀਂ ਹੁੰਦੀਆਂ ਕਿਉਂਕਿ ਇਹ ਸੀਮਤ ਅਰਸੇ ਅਤੇ ਪਲ ਰੱਖਦੇ ਹਨ। ਘਟਨਾਵਾਂ ਦੀ ਵਿਆਖਿਆ ਲਈ ਵਰਤੇ ਜਾਂਦੇ ਤੁੱਲ ਸ਼ਬਦ, ਗਣਿਤਿਕ ਘਟਨਾਵਾਂ ਤੋਂ ਉਲਟ, ਜੋ ਕਿਉਂਕਿ ਕੋਈ ਅਰਸਾ ਨਹੀਂ ਰੱਖਦੇ, ਕੋਈ ਸਪੀਡ ਵੀ ਨਹੀਂ ਰੱਖਦੇ ਅਤੇ ਗਤੀ ਵਿੱਚ ਨਹੀਂ ਹੋ ਸਕਦੇ।
ਦੂਜੇ ਪਾਸੇ, ਸਪੇਸਟਾਈਮ ਰਾਹੀਂ ਕਿਸੇ ਕਣ ਦਾ ਰਸਤਾ (ਪਥ) ਘਟਨਾਵਾਂ ਦੀ ਇੱਕ ਨਿਰੰਤਰ ਲੜੀ ਦੇ ਤੌਰ ਤੇ ਲਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਘਟਨਾਵਾਂ ਦੀ ਲੜੀ ਇੱਕ ਰੇਖਾ ਰਚਣ ਵਾਸਤੇ ਇਕੱਠੀ ਜੋੜੀ ਜਾ ਸਕਦੀ ਹੈ ਜੋ ਸਪੇਸਟਾਈਮ ਰਾਹੀਂ ਕਿਸੇ ਕਣ ਦੀ ਪ੍ਰੋਗ੍ਰੈੱਸ (ਵਿਕਾਸ) ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਦੀ ਹੈ। ਇਸ ਰੇਖਾ ਨੂੰ ਕਣ ਦੀ ਸੰਸਾਰ ਰੇਖਾ ਜਾਂ ਵਰਲਡ ਲਾਈਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।[7]: 105
ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ, ਇੱਕ ਔਬਜ਼ਰਵਰ, ਰੈਫ਼੍ਰੈਂਸ ਦੀ ਇੱਕ ਅਜਿਹੀ ਫ੍ਰੇਮ ਹੁੰਦਾ ਹੈ ਜੋ ਨਾਪੀਆਂ ਜਾ ਰਹੀਆਂ ਚੀਜ਼ਾਂ ਜਾਂ ਘਟਨਾਵਾਂ ਦਾ ਇੱਕ ਸੈੱਟ ਹੁੰਦਾ ਹੈ। ਇਹ ਵਰਤੋਂ ਔਬਜ਼ਰਵਰ ਸ਼ਬਦ ਦੇ ਸਧਾਰਨ ਅੰਗਰੇਜ਼ੀ ਅਰਥ ਤੋਂ ਮਹੱਤਵਪੂਰਨ ਤੌਰ ਤੇ ਫਰਕ ਰੱਖਦੀ ਹੈ। ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ ਵਿਰਾਸਤੀ ਤੌਰ ਤੇ ਗੈਰ-ਸਥਾਨਿਕ ਬਣਤਰਾਂ ਹੁੰਦੀਆਂ ਹਨ, ਅਤੇ ਇਹ ਕਹਿਣਾ ਕੋਈ ਅਰਥ ਨਹੀਂ ਰੱਖਦਾ ਕਿ ਕਿਸੇ ਔਬਜ਼ਰਵਰ ਦੀ ਕੋਈ ਲੋਕੇਸ਼ਨ ਹੁੰਦੀ ਹੈ।
ਚਿੱਤਰ 1‑1 ਵਿੱਚ, ਕਲਪਨਾ ਕਰੋ ਕਿ ਕੋਈ ਵਿਗਿਆਨੀ ਘੜੀਆਂ ਦੀ ਇੱਕ ਸੰਘਣੀ ਜਾਲ਼ੀ ਦੇ ਨਿਯੰਤ੍ਰਨ (ਕੰਟ੍ਰੋਲ) ਅਧੀਨ ਹੈ, ਜੋ ਉਸਦੀ ਅਜਿਹੀ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਅੰਦਰ ਸਿੰਕ੍ਰੋਨਾਇਜ਼ (ਮੇਲ) ਕੀਤੀਆਂ ਹੋਈਆਂ ਹਨ, ਜੋ ਸਪੇਸ ਦੀਆਂ ਤਿੰਨ ਡਾਇਮੈਨਸ਼ਨਾਂ (ਅਯਾਮਾਂ) ਦੇ ਰਾਹੀਂ ਅਨਿਸ਼ਚਿਤ ਤੌਰ ਤੇ ਫੈਲਦੀ ਹੈ। ਉਹ ਅਪਣੀ ਪਹੁੰਚ ਅੰਦਰ ਵਾਪਰ ਰਹੀਆਂ ਘਟਨਾਵਾਂ ਦੇ ਵਕਤ ਅਤੇ ਪੁਜੀਸ਼ਨ ਨੂੰ ਨਾਪਣ ਲਈ ਘੜੀਆਂ ਦੇ ਜਾਲੀਦਾਰ-ਢਾਂਚੇ ਦੀ ਵਰਤੋ ਕਰਦੀ ਹੈ। ਸ਼ਬਦ ਔਬਜ਼ਰਵਰ, ਇੱਕ ਇਨ੍ਰਸ਼ੀਅਲ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਨਾਲ ਜੁੜੀਆਂ ਘੜੀਆਂ ਦੇ ਸਾਰੇ ਦੇ ਸਾਰੇ ਐਨਸੈਂਬਲ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦਾ ਹੈ।[8]: 17–22
ਇੱਕ ਨਮੂਨੇ ਦਾ ਔਬਜ਼ਰਵਰ ਕਿਸੇ ਘਟਨਾ ਦੇ ਸ਼ੁਰੂ ਹੋਣ ਅਤੇ ਰਿਕਾਰਡ ਹੋਣ ਦਰਮਿਆਨ ਕੋਈ ਵਕਤ ਦੀ ਦੇਰੀ ਨਹੀਂ ਮਹਿਸੂਸ ਕਰਦਾ। ਵਾਸਤਵਿਕ ਜਿੰਦਗੀ ਵਿੱਚ, ਕਿਸੇ ਸਿਗਨਲ (ਸੰਕੇਤ) ਦੇ ਨਿਕਾਸ ਐਮਿਸ਼ਨ ਅਤੇ ਇਸਦੀ ਪਛਾਣ (ਡਿਟੈਕਸ਼ਨ) ਦਰਮਿਆਨ ਵਿਸ਼ੇਸ਼ ਤੌਰ ਤੇ ਦੇਰੀ ਹੋਵੇਗੀ। ਫੇਰ ਵੀ, ਕਿਸੇ ਪ੍ਰਯੋਗ ਦੇ ਡਾਟਾ ਰਿਡਕਸ਼ਨ ਵਿੱਚ, ਸਿਗਨਲ ਦੇ ਰਿਸੀਵ ਕਰਨ ਦੇ ਵਕਤ ਨੂੰ ਇਸਦਾ ਅਸਲੀ ਵਕਤ ਪਰਿਵਰਤਿਤ ਕਰਨ ਲਈ ਇਸ ਤਰਾਂ ਸੋਧਿਆ ਜਾਂਦਾ ਹੈ ਜਿਵੇਂ ਕਿਸੇ ਨਮੂਨੇ ਦੀਆਂ ਘੜੀਆਂ ਦੀ ਜਾਲ਼ੀ ਦੁਆਰਾ ਇਸਨੂੰ ਰਿਕਾਰਡ ਕੀਤਾ ਗਿਆ ਹੋਣਾ ਸੀ।
ਭੌਤਿਕ ਵਿਗਿਆਨੀ (ਸਿਗਨਲ ਸੰਚਾਰ ਦੇਰੀ ਵਾਲਾ ਹਿੱਸਾ ਕੱਢ ਦੇਣ ਤੋਂ ਬਾਦ) ਨਾਪੀ ਜਾਣ ਵਾਲੀ ਚੀਜ਼ ਜਾਂ ਨਿਰੀਖਣ ਕੀਤੀ ਜਾਣ ਵਾਲੀ ਚੀਜ਼ ਬਨਾਮ ਦੇਖੀ ਜਾਣ ਵਾਲੀ ਚੀਜ਼ (ਜੋ ਅਜਿਹੀਆਂ ਸੋਧਾਂ ਤੋਂ ਬਗੈਰ ਕਿਸੇ ਨੂੰ ਨਜ਼ਰ ਆਉਂਦੀ ਹੈ) ਵਿੱਚ ਫਰਕ ਕਰਦੇ ਹਨ। ਕੋਈ ਕੀ ਨਾਪਦਾ/ਨਿਰੀਖਤ ਕਰਦਾ ਹੈ ਬਨਾਮ ਕੋਈ ਕੀ ਦੇਖਦਾ ਹੈ, ਦਰਮਿਆਨ ਫਰਕ ਨੂੰ ਸਮਝਣ ਤੋਂ ਅਸਫ਼ਲ ਰਹਿਣਾ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਸ਼ੁਰੂਆਤੀ ਵਿਦਿਆਰਥੀਆਂ ਵਿਚਕਾਰ ਬਹੁਤ ਵੱਡੀ ਗਲਤੀ ਦਾ ਸੋਮਾ ਰਿਹਾ ਹੈ।[9]
ਸ਼ੁਰੂਆਤੀ ਫਿਲਾਸਫੀ
[ਸੋਧੋ]ਪੁਰਾਤਨ ਇੰਕਾ ਸਮਿਆਂ ਦੌਰਾਨ, ਜੋ ਮਲਟੀਪਲ ਸਦੀਆਂ[when?] ਤੱਕ ਫੈਲਦੇ ਹਨ, ਇੰਕਾਵਾਂ ਨੇ ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਨੂੰ ਇੱਕੋ ਸਿੰਗਲ ਧਾਰਨਾ ਦੇ ਤੌਰ ਤੇ ਪੁਕਾਰਿਆ, ਜਿਸ ਨੂੰ ਪਾਚਾ (ਕੇਚੂਆ: [pacha] Error: {{Lang}}: text has italic markup (help), ਆਈਮਾਰਾ: [pacha] Error: {{Lang}}: text has italic markup (help)) ਕਿਹਾ ਜਾਂਦਾ ਹੈ।[10][11] ਆਂਦੇ ਦੇ ਲੋਕਾਂ ਨੇ ਇੱਕ ਮਿਲਦੀ ਜੁਲਦੀ ਸਮਝ ਕਾਇਮ ਰੱਖੀ। [12]
ਇਹ ਭਾਗ ਪ੍ਰਸਾਰ ਦੀ ਜ਼ਰੂਰਤ ਹੈ। ਤੁਸੀਂ ਇਸ ਵਿੱਚ ਜੋੜ ਕੋ ਮਦਦ ਕਰ ਸਕਦੇ ਹੋ। (May 2017) |
ਇਤਿਹਾਸ
[ਸੋਧੋ]ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ
ਮੱਧ-1800ਵੇਂ ਦਹਾਕੇ ਤੋਂ, ਆਰਾਗੋ ਸਪੌਟ ਅਤੇ ਹਵਾ ਬਨਾਮ ਪਾਣੀ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਦੇ ਡਿਫ੍ਰੈਂਸ਼ੀਅਲ ਨਾਪਾਂ ਦੇ ਨਿਰੀਖਣ ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤੇ ਗਏ ਕਈ ਪ੍ਰਯੋਗਾਂ ਦੁਆਰਾ ਕੌਰਪਿਉਸਕਿਉਲਰ ਥਿਊਰੀ ਤੋਂ ਉਲਟ ਪ੍ਰਕਾਸ਼ ਦੀ ਤਰੰਗ ਫਿਤ੍ਰਤ ਸਿੱਧ ਕੀਤੀ ਗਈ ਮੰਨੀ ਜਾਂਦੀ ਰਹੀ ਸੀ।[13] ਤਰੰਗਾਂ ਤੋਂ ਭਾਵ ਸੀ ਕਿਸੇ ਮਾਧਿਅਮ ਦੀ ਹੋਂਦ ਜੋ ਤਰੰਗਾਂ ਬਣਾਉਂਦਾ ਸੀ, ਪਰ ਇਹਨਾਂ ਪ੍ਰਯੋਗਾਂ ਦੇ ਨਤੀਜਿਆਂ ਵਜੋਂ ਪਰਿਕਲਪਿਤ ਚਮਕਦਾਰ ਏਇਥਰ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਨੂੰ ਨਾਪਣ ਦੇ ਯਤਨਾਂ ਨੇ ਵਿਰੋਧਾਭਾਸ ਵਾਲ਼ੇ ਨਤੀਜੇ ਮੁਹੱਈਆ ਕਰਵਾਏ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, 1851 ਦੇ ਫਿਜ਼ਿਆਉ ਪ੍ਰਯੋਗ ਨੇ ਸਾਬਤ ਕੀਤਾ ਕਿ ਵਹਿ ਰਹੇ ਪਾਣੀ ਅੰਦਰ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਹਵਾ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਅਤੇ ਪਾਣੀ ਦੀ ਸਪੀਡ ਦੇ ਜੋੜ ਨਾਲ਼ੋਂ ਪਾਣੀ ਦੇ ਰਿਫ੍ਰੈਕਸ਼ਨ ਇੰਡੈਕਸ ਉੱਤੇ ਅਧਾਰਿਤ ਮਾਤਰਾ ਜਿੰਨੀ ਘੱਟ ਸੀ।
ਹੋਰ ਮਸਲਿਆਂ ਵਿਚਕਾਰ, ਰੈਫ੍ਰੈਕਸ਼ਨ (ਜੋ ਵੇਵਲੈਂਥ ਉੱਤੇ ਨਿਰਭਰ ਹੈ) ਦੇ ਇੰਡੈਕਸ ਉੱਤੇ ਇਸ ਪ੍ਰਯੋਗ ਦੇ ਨਤੀਜਿਆਂ ਵਜੋਂ ਮਿਲੀ ਅੰਸ਼ਿਕ ਏਇਥਰ-ਡ੍ਰੈਗਿੰਗ ਦੀ ਨਿਰਭਰਤਾ ਨੇ ਸਖਤ ਨਤੀਜੇ ਵੱਲ ਲਿਜਾਂਦਾ ਕਿ ਏਇਥਰ ਤਤਕਾਲ ਤੌਰ ਤੇ ਪ੍ਰਕਾਸ਼ ਦੇ ਵੱਖਰੇ ਰੰਗਾਂ ਵਾਸਤੇ ਵੱਖਰੀਆਂ ਸਪੀਡਾਂ ਨਾਲ ਵਹਿੰਦਾ ਹੈ। [14]
1887 ਦੇ ਪ੍ਰਸਿੱਧ ਮਾਈਕਲਸਨ-ਮੋਰਲੇ ਪ੍ਰਯੋਗ (Fig. 1‑2) ਨੇ ਧਰਤੀ ਦੀਆਂ ਗਤੀਆਂ ਦੇ ਉੱਤੇ ਕੋਈ ਡਿਫ੍ਰੈਂਸ਼ੀਅਲ ਪ੍ਰਭਾਵ ਨਹੀਂ ਦਿਖਾਇਆ, ਭਾਵੇਂ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਉੱਤੇ ਪਰਿਕਲਪਿਤ ਏਇਥਰ, ਅਤੇ ਸਭ ਤੋਂ ਜਿਆਦਾ ਸੰਭਵ ਵਿਆਖਿਆ, ਸੰਪੂਰਨ ਏਇਥਰ ਡ੍ਰੈਗਿੰਗ, ਸਥੈੱਲਰ ਅਬੈਰੇਸ਼ਨ ਦੇ ਨਿਰੀਖਣ ਨਾਲ ਮੇਲ ਨਹੀਂ ਖਾਂਦੀ ਸੀ। (Fig. 1‑3).[6]
1889 ਵਿੱਚ ਜੌਰਜ ਫ੍ਰਾਂਸਿਸ ਫਿਟਜ਼ਗ੍ਰਾਲਡ ਅਤੇ 1892 ਵਿੱਚ ਹੈਂਡ੍ਰਿਕ ਲੌਰੰਟਜ਼ ਨੇ ਸੁਤੰਤਰ ਤੌਰ ਤੇ ਪ੍ਰਸਤਾਵ ਰੱਖਿਆ ਕਿ ਸਥਿਰ ਕੀਤੇ ਹੋਏ ਏਇਥਰ ਰਾਹੀਂ ਯਾਤਰਾ ਕਰਦੀਆਂ ਪਦਾਰਥਕ ਵਸਤੂਆਂ ਭੌਤਿਕੀ ਤੌਰ ਤੇ ਅਪਣੇ ਲਾਂਘੇ ਦੁਆਰਾ ਪ੍ਰਭਾਵਿਤ ਹੁੰਦੀਆਂ ਹਨ, ਇੰਨੀ ਕੁ ਮਾਤਰਾ ਜਿੰਨਾ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਦਾ ਵਿਰੋਧ ਕਰਦਾ ਹੈ, ਜੋ ਮਾਈਕਲਸਨ-ਮੋਰਲੇ ਪ੍ਰਯੋਗ ਦੇ ਨੈਗਟਿਵ ਨਤੀਜਿਆਂ ਨੂੰ ਸਮਝਾਉਣ ਲਈ ਲਾਜ਼ਮੀ ਸੀ। (ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਦੇ ਸਮਕੋਣ ਵਾਲੀਆਂ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਕੋਈ ਲੰਬਾਈ ਤਬਦੀਲੀ ਨਹੀਂ ਵਾਪਰਦੀ।) 1904 ਤੋਂ, ਲੌਰੰਟਜ਼ ਨੇ ਅਪਣੀ ਥਿਊਰੀ ਵਿੱਚ ਇਸਤਰਾਂ ਵਿਸਥਾਰ ਕੀਤਾ ਕਿ ਉਸਨੇ ਉਹਨਾਂ ਇਕੁਏਸ਼ਨਾਂ ਨਾਲ ਰਸਮੀ ਤੌਰ ਤੇ ਮਿਲਦੀਆ਼ ਜੁਲਦੀਆਂ ਇਕੁਏਸ਼ਨਾਂ ਦੀ ਪ੍ਰਾਪਤੀ ਕੀਤੀ ਜਿਹਨਾਂ ਨੂੰ ਬਾਦ ਵਿੱਚ ਆਈਨਸਟਾਈਨ ਨੇ ਵਿਓਂਤਬੰਦ ਕੀਤਾ (ਯਾਨਿ ਕਿ, ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੌਰਮ), ਪਰ ਬੁਨਿਆਦੀ ਤੌਰ ਤੇ ਜਰਾ ਵੱਖਰੀ ਵਿਆਖਿਆ ਨਾਲ ਵਿਓਂਤਬੰਦ ਕੀਤਾ।
ਡਾਇਨਾਮਿਕਸ (ਫੋਰਸਾਂ ਅਤੇ ਟੋਰਕਾਂ ਅਯੇ ਗਤੀ ਉੱਤੇ ਇਹਨਾਂ ਦੇ ਪ੍ਰਭਾਵਾਂ ਦੇ ਅਧਿਐਨ) ਦੀ ਇੱਕ ਥਿਊਰੀ ਦੇ ਤੌਰ ਤੇ, ਉਸਦੀ ਥਿਊਰੀ ਨੇ ਪਦਾਰਥ ਦੇ ਭੌਤਿਕੀ ਰਚਣਹਾਰਿਆਂ ਦੇ ਵਾਸਤਵਿਕ ਭੌਤਿਕੀ ਤਰੋੜ-ਮਰੋੜ ਨੂੰ ਮੰਨਿਆ, ਅਤੇ ਇਸਨੇ ਨਿਰੀਖਣ ਕੀਤੇ ਜਾ ਸਕਣ ਯੋਗ ਵਿਭਿੰਨ ਭੌਤਿਕੀ ਪ੍ਰਭਾਵਾਂ ਦਾ ਅਨੁਮਾਨ ਲਗਾਇਆ।[15]: 163–174 ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਜਿਆਦਾਤਰ ਭੌਤਿਕ ਵਿਗਿਆਨੀਆਂ ਦਾ ਮੰਨਣਾ ਸੀ ਕਿ ਲੌਰੰਟਜ਼ ਕੰਟ੍ਰੈਕਸ਼ਨ ਟ੍ਰਓਟਨ-ਨੋਬਲ ਐਕਸਪੈਰੀਮੈਂਟ ਜਾਂ ਰੇਲੀਘ ਅਤੇ ਬ੍ਰੇਸ ਦੇ ਪ੍ਰਯੋਗਾਂ ਵਰਗੇ ਅਜਿਹੇ ਪ੍ਰਯੋਗਾਂ ਦੁਆਰਾ ਪਛਾਣਮਯੋਗ ਹੋ ਸਕਦਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।[16]: 64 ਫੇਰ ਵੀ, ਇਸਦੇ ਨੈਗਟਿਵ ਨਤੀਜੇ ਮਿਲੇ, ਅਤੇ ਇਲੈਕਟ੍ਰੌਨ ਦੀ ਉਸਦੀ 1904 ਦੀ ਥਿਊਰੀ ਅੰਦਰ, ਲੌਰੰਟਜ਼ ਨੇ ਇਹਨਾਂ ਨੈਗਟਿਵ ਨਤੀਜਿਆਂ ਬਾਰੇ ਸਮਝਾਇਆ ਕਿ ਇਹ ਉਸਦੀਆਂ ਟ੍ਰਾਂਸਫੌਰਮਾਂ ਦੇ ਇੱਕ ਲਾਜ਼ਮੀ ਨਤੀਜੇ ਵਜੋਂ ਸਨ। ਪੋਆਇਨਕੇਅਰ ਨੇ, ਲੌਰੰਟਜ਼ ਵਿਸ਼ਲੇਸ਼ਣ ਵਿੱਚ ਕੁੱਝ ਗਲਤੀਆਂ ਸੁਧਾਰਦਿਆਂ ਸਾਬਤ ਕੀਤਾ ਕਿ ਏਇਥਰ ਪਛਾਣਿਆ ਨਹੀਂ ਜਾ ਸਕਦਾ, ਪਰ ਉਸਨੇ ਅਪਣੀ ਜਿੰਦਗੀ ਦੇ ਰਹਿੰਦੇ ਵਕਤ ਦੌਰਾਨ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੌਰਮ ਦੀ ਡਾਇਨੈਮੀਕਲ ਵਿਆਖਿਆ ਵਿੱਚ ਵਿਸ਼ਵਾਸ ਕਰਨਾ ਜਾਰੀ ਰੱਖਿਆ।[15]: 163–174
ਭੌਤਿਕ ਵਿਗਿਆਨ ਵਿੱਚ ਵਰਤਮਾਨ ਵਿਕਸਿਤ ਸਮਝ, 20ਵੀਂ-ਸਦੀ ਦੇ ਮੁੱਕਣ ਦੀ ਲੰਬੇ ਸਮੇਂ ਤੋਂ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾ ਰਹੀ ਥਾਂ ਵੱਲ ਝੁਕਾਓ ਰੱਖਦੀ ਜਾਂਦੀ ਹੈ ਜੋ ਮਾਈਕਲਸਨ ਅਤੇ ਮੋਰਲੇ ਪ੍ਰਯੋਗ ਉੱਤੇ ਹੈ। ਪਰ ਆਈਨਸਟਾਈਨ ਲਈ, ਉਸਦੀ ਅੰਤਿਮ ਪ੍ਰੇਰਣਾ ਉਹ ਬੇਮੇਲਤਾਵਾਂ ਰਹੀਆਂ ਹਨ ਜੋ ਉਸਨੇ ਓਸ ਅੰਦਾਜ਼ ਵਿੱਚ ਸਮਝੀਆਂ ਸਨ ਜਿਸ ਵਿੱਚ ਇਲੈਕਟ੍ਰੋਮੈਗਨਟਿਜ਼ਮ ਦੀ ਮੈਕਸਵੈੱਲ ਦੀ ਥਿਊਰੀ ਵਿਆਖਿਅਤ ਕੀਤੀ ਗਈ ਸੀ। ਭਾਵੇਂ 1905 ਵਿੱਚ, ਆਈਨਸਟਾਈਨ ਨੇ ਗਤੀਸ਼ੀਲ ਚੁੰਬਕ ਅਤੇ ਕੰਡਕਟਰ ਸਮੱਸਿਆ ਬਾਰੇ ਲਿਖਿਆ ਜਿਸਨੂੰ ਆਮਤੌਰ ਤੇ ਅਸਮਰੂਪਤਾਵਾਂ ਵਾਲ ਲਿਜਾਂਦਾ ਸਮਝਿਆ ਗਿਆ ਸੀ, ਫੇਰ ਵੀ ਇਹ ਅਸਮਰੂਪਤਾਵਾਂ ਹਰਟਜ਼, ਲੌਰੰਟਜ਼, ਅਤੇ ਖੁਦ ਮੈਕਸਵੈੱਲ ਸਮੇਤ, ਮੈਕਸਵੈੱਲ ਦੀ ਥਿਊਰੀ ਦੇ ਪ੍ਰਮੁੱਖ ਸਮਰਥਕਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਦੁਆਰਾ ਮੰਗੀ ਜਾਂਦੀ ਵਿਆਖਿਆ ਮੰਗਦੇ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਮਸਲੇ ਦੇ ਤੌਰ ਤੇ ਨੋਟ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਨਹੀਂ ਲਗਦੀਆਂ।[16]: 135–142
ਆਈਨਸਟਾਈਨ ਦੀ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਥਿਊਰੀ, ਜੋ 1905 ਵਿੱਚ ਪੇਸ਼ ਕੀਤੀ ਗਈ ਸੀ, ਨੇ ਇਹਨਾਂ ਅਤੇ ਹੋਰ ਵੱਡੇ ਭੌਤਿਕ ਵਿਗਿਆਨ ਰਹੱਸਾਂ ਦਾ ਇੱਕ ਸੰਪੂਰਣ ਹੱਲ ਮੁਹੱਈਆ ਕਰਵਾਇਆ, ਅਤੇ ਇਸਨੇ ਅਜਿਹੀਆਂ ਭਵਿੱਖਬਾਣੀਆਂ ਸ਼ੁਰੂ ਕੀਤੀਆਂ ਜੋ ਵਾਰ ਵਾਰ ਸਾਬਤ ਹੁੰਦੀਆਂ ਰਹੀਆਂ ਹਨ। ਆਈਨਸਟਾਈਨ ਨੇ ਅਪਣਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਾਇਨਾਮੈਟਿਕਸ (ਫੋਰਸਾਂ ਦੀ ਰੈਫ੍ਰੈਂਸ ਤੋਂ ਬਗੈਰ ਗਤੀਸ਼ੀਲ ਚੀਜ਼ਾਂ ਦੇ ਅਧਿਐਨ) ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਕੀਤਾ ਨਾ ਕਿ ਡਾਇਨਾਮਿਕਸ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ। ਇਹ ਲਗਦਾ ਹੋ ਸਕੇਗਾ ਕਿ ਉਸਨੇ ਸਪੇਸਟਾਈਮ ਬਾਰੇ ਪਹਿਲਾਂ ਰੇਖਾਗਣਿਤਿਕ ਤੌਰ ਤੇ ਨਹੀਂ ਸੋਚਿਆ ਸੀ। ਇਹ ਆਈਨਸਟਾਈਨ ਦਾ ਪਹਿਲਾ ਗਣਿਤ ਪ੍ਰੋਫੈੱਸਰ ਹਰਮਨ ਮਿੰਕੋਵਸਕੀ ਸੀ, ਜਿਸਨੇ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਇੱਕ ਰੇਖਾਗਣਿਤਿਕ ਵਿਆਖਿਆ ਮੁਹੱਈਆ ਕਰਵਾਉਣੀ ਸੀ।[17]: 219
ਆਈਨਸਟਾਈਨ ਸ਼ੁਰੂ ਵਿੱਚ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਰੇਖਾਗਣਿਤਿਕ ਵਿਆਖਿਆ ਨੂੰ ਖਾਰਿਜ ਕਰਦਾ ਰਿਹਾ ਸੀ ਤੇ ਇਸਨੂੰ überflüssige Gelehrsamkeit (ਜਰੂਰਤ ਤੋਂ ਜਿਆਦਾ ਗਿਆਨ) ਪੁਕਾਰਦਾ ਰਿਹਾ ਸੀ। ਫੇਰ ਵੀ, ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਰੇਖਾਗਣਿਤਿਕ ਵਿਆਖਿਆ ਨੇ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਆਈਨਸਟਾਈਨ ਦੇ ਬਾਦ ਦੇ ਵਿਕਾਸ ਪ੍ਰਤਿ ਮਹੱਤਵਪੂਰਨ ਰੋਲ ਨੂੰ ਸਾਬਤ ਕਰਨਾ ਸੀ, ਅਤੇ 1916 ਵਿੱਚ, ਆਈਨਸਟਾਈਨ ਨੇ ਪੂਰੀ ਤਰਾਂ ਮਿੰਕੋਵਸਕੀ ਪ੍ਰਤਿ ਅਪਣੀ ਅਹਿਸਾਨਮੰਦੀ ਸਵੀਕਾਰ ਕੀਤੀ, ਜਿਸਦੀ ਵਿਆਖਿਆ ਨੇ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਪ੍ਰਤਿ ਪਰਿਵਰਤਨ ਨੂੰ ਵੱਡੇ ਪੱਧਰ ਤੇ ਮੱਦਦ ਕੀਤੀ।[15]: 151–152 ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਸਪੇਸਟਾਈਮ ਉਦੋਂ ਤੋਂ ਮਿੰਕੋਵਸਕੀ ਸਪੇਸਟਾਈਮ ਦੇ ਤੌਰ ਤੇ ਜਾਣਿਆ ਜਾਂਦਾ ਰਿਹਾ ਹੈ।
ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਉਦਾਹਰਨ ਹੈਨਰੀ ਪੋਆਇਨਕੇਅਰ ਹੈ,[18][16]: 73–80, 93–95 ਜਿਸਨੇ 1898 ਵਿੱਚ ਤਰਕ ਦਿੱਤਾ ਕਿ ਦੋ ਘਟਨਾਵਾਂ ਦੀ ਤਤਕਾਲੀਨਤਾ ਇੱਕ ਪ੍ਰੰਪਰਾ ਦਾ ਮਸਲਾ ਹੈ।[19][note 2] 1900 ਵਿੱਚ, ਉਸਨੇ ਪਛਾਣਿਆ ਕਿ ਲੌਰੰਟਜ਼ ਦਾ ਲੋਕਲ ਟਾਈਮ ਦਰਅਸਲ ਓਹ ਸਮਾਂ ਹੁੰਦਾ ਹੈ ਜੋ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਨੂੰ ਸਥਿਰ ਮੰਨਦੇ ਹੋਏ ਕਲੌਕ ਸਿੰਕ੍ਰੋਨਾਇਜ਼ੇਸ਼ਨ ਦੀ ਇੱਕ ਸਪੱਸ਼ਟ ਕ੍ਰਿਆਤਮਿਕ ਪਰਿਭਾਸ਼ਾ ਲਾਗੂ ਕਰਦੇ ਹੋਏ ਗਤੀਸ਼ੀਲ ਕਲੌਕ ਦਿੰਦੇ ਹਨ।[note 3] 1900 ਅਤੇ 1904 ਵਿੱਚ, ਉਸਨੇ ਓਸ ਚੀਜ਼ ਦੀ ਪ੍ਰਮਾਣਿਕਤਾ ਤੇ ਜ਼ੋਰ ਦਿੰਦੇ ਹੋਏ ਏਇਥਰ ਦੀ ਜਨਮਜਾਤ ਪਛਾਣ-ਅਯੋਗਤਾ ਸੁਝਾਈ, ਜਿਸ ਨੂੰ ਉਸਨੇ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਸਿਧਾਂਤ ਕਿਹਾ, ਅਤੇ 1905/1906 ਵਿੱਚ[20] ਉਸਨੇ ਗਣਿਤਿਕ ਤੌਰ ਤੇ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤ ਅਨੁਸਾਰ ਕਰਨ ਵਾਸਤੇ ਇਲੈਕਟ੍ਰੌਨਾਂ ਦੀ ਲੌਰੰਟਜ਼ ਥਿਊਰੀ ਨੂੰ ਸੰਪੂਰਣ ਬਣਾਇਆ। ਲੌਰੰਟਜ਼ ਇਨਵੇਰੀਅੰਟ ਗਰੈਵੀਟੇਸ਼ਨ ਉੱਤੇ ਵਿਭਿੰਨ ਪਰਿਕਲਪਨਾਵਾਂ ਦੀ ਚਰਚਾ ਕਰਦੇ ਵਕਤ, ਉਸਨੇ ਫੋਰ-ਪੁਜੀਸਨ, ਫੋਰ-ਵਿਲੌਸਿਟੀ, ਅਤੇ ਫੋਰ-ਫੋਰਸ ਨਾਮਕ ਵਿਭਿੰਨ ਫੋਰ-ਵੈਕਟਰਾਂ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੇ ਹੋਏ ਇੱਕ 4-ਅਯਾਮੀ ਸਪੇਸਟਾਈਮ ਦਾ ਨਵੀਨ ਸੰਕਲਪ ਪੇਸ਼ ਕੀਤਾ।[21][22] ਉਸਨੇ, ਫੇਰ ਵੀ, ਅਗਲੇ ਪੇਪਰਾਂ ਵਿੱਚ 4-ਅਯਾਮੀ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਦਾ ਪਿੱਛਾ ਨਹੀਂ ਕੀਤਾ, ਤੇ ਕਿਹਾ ਕਿ ਰੀਸਰਚ ਦੀ ਇਹ ਲਾਈਨ “ਸੀਮਤ ਲਾਭ ਵਾਸਤੇ ਵੱਡੀ ਤਕਲੀਫ ਜਰੂਰੀ” ਕਰਦੀ ਲਗਦੀ ਹੈ, ਤੇ ਅੰਤ ਨੂੰ ਇਹ ਨਤੀਜਾ ਕੱਢਿਆ ਕਿ ਤਿੰਨ-ਅਯਾਮੀ ਭਾਸ਼ਾ ਸਾਡੇ ਸੰਸਾਰ ਦੇ ਵੇਰਵੇ ਪ੍ਰਤਿ ਸਭ ਤੋਂ ਜਿਆਦਾ ਢੁਕਵੀਂ ਲਗਦੀ ਹੈ।[22] ਹੋਰ ਅੱਗੇ, 1909 ਜਿੰਨੀ ਦੇਰ ਬਾਦ, ਪੋਆਇਨਕੇਅਰ ਨੇ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੌਰਮ ਦੀ ਗਤੀਸ਼ੀਲਾਤਮਿਕ ਵਿਆਖਿਆ ਵਿੱਚ ਵਿਸਵਾਸ ਰੱਖਣਾ ਜਾਰੀ ਰੱਖਿਆ।[15]: 163–174 ਇਹਨਾਂ ਅਤੇ ਹੋਰ ਕਾਰਨਾਂ ਕਰਕੇ, ਵਿਗਿਆਨ ਦੇ ਜਿਆਦਾਤਰ ਇਤਿਹਾਸਕਾਰ ਤਰਕ ਕਰਦੇ ਰਹੇ ਹਨ ਕਿ ਪੋਆਇਨਕੇਅਰ ਨੇ ਉਹ ਨਹੀਂ ਖੋਜਿਆ ਜਿਸ ਨੂੰ ਹੁਣ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।[16][15]
1905 ਵਿੱਚ, ਆਈਨਸਟਾਈਨ ਨੇ ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਦੀ ਇੱਕ ਥਿਊਰੀ ਦੇ ਤੌਰ ਤੇ ਇਸਦੀ ਅਜੋਕੀ ਸਮਝ ਮੁਤਾਬਿਕ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਪੇਸ਼ ਕੀਤੀ (ਭਾਵੇਂ ਸਪੇਸਟਾਈਮ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਦੀਆਂ ਤਕਨੀਕਾਂ ਵਰਤੇਂ ਬਗੈਰ)।[16][15] ਜਦੋਂਕਿ ਉਸਦੇ ਨਤੀਜੇ ਗਣਿਤਿਕ ਤੌਰ ਤੇ ਲੌਰੰਟਜ਼ ਅਤੇ ਪੋਆਇਨਕੇਅਰ ਦੇ ਨਤੀਜਿਆਂ ਨਾਲ ਮਿਲਦੇ ਹਨ, ਫੇਰ ਵੀ ਇਹ ਆਈਨਸਟਾਈਨ ਹੀ ਸੀ। ਜਿਸਨੇ ਸਾਬਤ ਕੀਤਾ ਕਿ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਪਦਾਰਥ ਅਤੇ ਏਇਥਰ ਦਰਮਿਆਨ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਦਾ ਨਤੀਜਾ ਨਹੀਂ ਹਨ, ਸਗੋਂ ਖੁਦ ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਦੀ ਕੁਦਰਤ ਨਾਲ ਸਬੰਧਤ ਹਨ। ਆਈਨਸਟਾਈਨ ਨੇ ਅਪਣਾ ਵਿਸਲੇਸ਼ਣ ਡਾਇਨਾਮਿਕਸ ਨਾਲ਼ੋਂ ਕਾਇਨਾਮੈਟਿਕਸ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਕੀਤਾ। ਉਸਨੇ ਅਪਣੇ ਸਾਰੇ ਨਤੀਜੇ ਇਹ ਪਛਾਣਦੇ ਹੋਏ ਪ੍ਰਾਪਤ ਕੀਤੇ ਕਿ ਸਾਰੀ ਦੀ ਸਾਰੀ ਥਿਊਰੀ ਦੋ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤਾਂ ਉੱਤੇ ਬਣਾਈ ਜਾ ਸਕਦੀ ਹੈ: ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਸਿਧਾਂਤ ਅਤੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਦੀ ਸਥਿਰਤਾ ਦਾ ਸਿਧਾਂਤ। ਇਸਦੇ ਨਾਲ ਨਾਲ, ਆਈਨਸਟਾਈਨ ਨੇ 1905 ਵਿੱਚ ਸਰਵ ਸਧਾਰਨ ਪੁੰਜ ਅਤੇ ਊਰਜਾ ਸਮਾਨਤਾ ਪੇਸ਼ ਕਰਦੇ ਹੋਏ ਇੱਕ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਪੁੰਜ-ਊਰਜਾ ਸਬੰਧ ਦੇ ਪਿਛਲੇ ਯਤਨਾਂ ਨੂੰ ਦਬਾ ਦਿੱਤਾ, ਜੋ 1907 ਵਿੱਚ ਸਮਾਨਤਾ ਸਿਧਾਂਤ ਦੀ ਉਸਦੀ ਅਗਲੀ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਵਾਸਤੇ ਸਹਾਇਕ ਰਿਹਾ ਸੀ।, ਜਿਸਨੇ ਇਨਰਸੀਅਲ ਅਤੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪੁੰਜ ਐਲਾਨ ਕੀਤਾ। ਪੁੰਜ-ਊਰਜਾ ਸਮਾਨਤਾ ਵਰਤਦੇ ਹੋਏ, ਇਸਦੇ ਨਾਲ ਨਾਲ, ਆਈਨਸਟਾਈਨ ਨੇ ਦਿਖਾਇਆ, ਕਿ ਕਿਸੇ ਵਸਤੂ ਦਾ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪੁੰਜ ਉਸਦੀ ਊਰਜਾ ਸਮੱਗਰੀ ਦੇ ਅਨੁਪਾਤ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਜੋ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿਕਸਿਤ ਕਰਨ ਵਿੱਚ ਸ਼ੁਰੂਆਤੀ ਨਤੀਜਿਆਂ ਵਿੱਚੋਂ ਇੱਕ ਨਤੀਜਾ ਸੀ। ਜਦੋਂਕਿ ਇਹ ਦਿਸਦਾ ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਉਸਨੇ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਰੇਖਾਗਣਿਤਿਕ ਤੌਰ ਤੇ ਸਪੇਸਟਾਈਮ ਬਾਬਤ ਨਹੀਂ ਸੋਚਿਆ ਸੀ,[17]: 219 ਫੇਰ ਵੀ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਹੋਰ ਅੱਗੇ ਵਿਕਾਸ ਵਿੱਚ ਆਈਨਸਟਾਈਨ ਨੇ ਸਪੇਸਟਾਈਮ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਨੂੰ ਪੂਰੀ ਤਰਾਂ ਸਾਮਿਲ ਕਰ ਲਿਆ ਸੀ।
ਜਦੋਂ ਆਈਨਸਟਾਈਨ ਨੇ 1905 ਵਿੱਚ ਛਾਪਿਆ, ਤਾਂ ਇੱਕਹੋਰ ਪ੍ਰਤੀਯੋਗੀ, ਉਸਦਾ ਪਹਿਲਾ ਗਣਿਤ ਪ੍ਰੋਫੈੱਸਰ ਹਰਮਨ ਮਿੰਕੋਵਸਕੀ, ਵੀ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਜਿਆਦਾਤਰ ਬੁਨਿਆਦੀ ਤੱਤਾਂ ਉੱਤੇ ਅੱਪੜਿਆ ਸੀ। ਮੈਕਸ ਬੌਰਨ ਨੇ ਮਿੰਕੋਵਸਕੀ ਦਾ ਵਿਦਿਆਰਥ-ਸਹੋਯੋਗਿਕ ਹੋਣ ਵਾਸਤੇ ਮਿੰਕੋਵਸਕੀ ਨਾਲ ਇੱਕ ਮੀਟਿੰਗ ਦਾ ਪੁਨਰ-ਪ੍ਰਬੰਧ ਕੀਤਾ:[23]
I ਕੋਲੋਗਨਿ ਗਿਆ, ਮਿੰਕੋਵਸਕੀ ਨੂੰ ਮਿਲਿਆ ਅਤੇ 2 ਸਤੰਬਰ 1908 ਨੂੰ ਉਸਦਾ ਦਿੱਤਾ ਜਾ ਰਿਹਾ ਲੈਕਚਰ “ਸਪੇਸ ਅਤੇ ਟਾਈਮ” ਸੁਣਿਆ। […] ਉਸਨੇ ਮੈਨੂੰ ਬਾਦ ਵਿੱਚ ਦੱਸਿਆ ਕਿ ਉਸਨੂੰ ਓਦੋਂ ਵੱਡਾ ਝਟਕਾ ਲੱਗਾ ਜਦੋਂ ਆਈਨਸਟਾਈਨ ਨੇ ਅਪਣਾ ਓਹ ਪੇਪਰ ਛਾਪਿਆ ਜਿਸ ਵਿੱਚ ਇੱਕ ਦੂਜੇ ਪ੍ਰਤਿ ਸਾਪੇਖਿਕ ਗਤੀਸ਼ੀਲ ਔਬਜ਼ਰਵਰਾਂ ਦੇ ਵੱਖਰੇ ਲੋਕਲ ਵਕਤਾਂ ਦੀ ਸਮਾਨਤਾ ਉੱਚਾਰੀ ਗਈ ਸੀ; ਜਿਸ ਵਾਸਤੇ ਉਸ ਇਹੀ ਨਤੀਜਿਆਂ ਉੱਤੇ ਸੁਤੰਤਰ ਤੌਰ ਤੇ ਪਹੁੰਚਿਆ ਸੀ। ਪਰ ਉਸਨੇ ਛਪਵਾਇਆ ਨਹੀਂ ਕਿਉਂਕਿ ਉਹ ਪਹਿਲਾਂ ਇਸਨੂੰ ਹਰੇਕ ਤਰੀਕੇ ਨਾਲ ਸ਼ਾਨਦਾਰ ਤੌਰ ਤੇ ਗਣਿਤਿਕ ਬਣਤਰ ਕੱਢਕੇ ਪੇਸ਼ ਕਰਨਾ ਪਸੰਦ ਕਰਦਾ ਸੀ। ਉਸਨੇ ਕਦੇ ਵੀ ਪਹਿਲ ਦਾ ਦਾਅਵਾ ਨਹੀਂ ਕੀਤਾ ਅਤੇ ਹਮੇਸ਼ਾਂ ਹੀ ਮਹਾਨ ਖੋਜ ਵਿੱਚ ਉਸਦੀ ਪੂਰੀ ਸਾਂਝ ਆਈਨਸਟਾਈਨ ਨੂੰ ਦਿੰਦਾ ਰਿਹਾ।
ਮਿੰਕੋਵਸਕੀ 1905 ਦੀਆਂ ਗਰਮੀਆਂ ਤੋਂ ਮਾਈਕਲਸਨ ਦੇ ਹਾਨੀਕਾਰ ਪ੍ਰਯੋਗਾਂ ਤੋਂ ਬਾਦ ਇਲੈਕਟ੍ਰੋਡਾਇਨਾਮਿਕਸ ਦੀ ਅਵਸਥਾ ਨਾਲ ਸਬੰਧਤ ਰਿਹਾ ਸੀ, ਜਦੋਂ ਮਿੰਕੋਵਸਕੀ ਅਤੇ ਡੇਵਿਡ ਹਿਲਬ੍ਰਟ ਨੇ ਲੌਰੰਟਜ਼, ਪੋਆਇਨਕੇਅਰ ਅਤੇ ਹੋਰਾਂ ਦੇ ਪੇਪਰਾਂ ਦਾ ਅਧਿਐਨ ਕਰਨ ਵਾਸਤੇ ਸਮਕਾਲੀਨ ਪ੍ਰਸਿੱਧ ਭੌਤਿਕ ਵਿਗਿਆਨੀਆਂ ਦੁਆਰਾ ਇੱਕ ਅਡਵਾਂਸਡ ਸੈਮੀਨਾਰ ਦੀ ਹਾਜ਼ਰੀ ਭਰਨ ਦੀ ਅਗਵਾਈ ਕੀਤੀ ਸੀ। ਫੇਰ ਵੀ, ਇਹ ਪੂਰੀ ਤਰਾਂ ਸਪੱਸ਼ਟ ਨਹੀਂ ਹੈ ਕਿ ਕਦੋਂ ਮਿੰਕੋਵਸਕੀ ਨੇ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਰੇਖਾਗਣਿਤਿਕ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਨੂੰ ਵਿਓਂਤਬੰਦ ਕਰਨਾ ਸੁਰੂ ਕੀਤਾ ਸੀ ਜਿਸਨੇ ਉਸਦਾ ਨਾਮ ਪੈਦਾ ਕਰਨਾ ਸੀ, ਜਾਂ ਉਹ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਦੀ ਪੋਆਇਨਕੇਅਰ ਦੀ ਚਾਰ-ਅਯਾਮੀ ਵਿਆਖਿਆ ਤੋਂ ਕਿੰਨਾ ਕੁ ਪ੍ਰਭਾਵਿਤ ਹੋਇਆ ਸੀ। ਨਾਂ ਹੀ ਇਹ ਹੀ ਸਪੱਸ਼ਟ ਹੋਇਆ ਹੈ ਕਿ ਜੇਕਰ ਉਸਨੇ ਕਦੇ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਪ੍ਰਤਿ ਸਮਝ ਪ੍ਰਤਿ ਆਈਨਸਟਾਈਨ ਦੇ ਆਲੋਚਨਾਤਮਿਕ ਯੋਗਦਾਨ ਦੀ ਇਹ ਸੋਚਦੇ ਹੋਏ ਪੂਰੀ ਤਰਾਂ ਪ੍ਰਸ਼ੰਸਾ ਵੀ ਕੀਤੀ ਹੋਵੇ, ਕਿ ਆਈਨਸਟਾਈਨ ਦਾ ਕੰਮ ਲੌਰੰਟਜ਼ ਦੇ ਕੰਮ ਦੀ ਇੱਕ ਸ਼ਾਖਾ ਹੋਵੇ।[24]
ਅਪਣੀ ਮੌਤ ਤੋਂ ਸਾਲ ਕੁ ਤੋਂ ਥੋੜਾ ਚਿਰ ਪਹਿਲਾਂ, ਮਿੰਕੋਵਸਕੀ ਨੇ ਨਵੰਬਰ 5, 1907 ਨੂੰ “ਦੀ ਰਿਲੇਟੀਵਿਟੀ ਪ੍ਰਿੰਸੀਪਲ” (Das Relativitätsprinzip) ਸਿਰਲੇਖ ਅਧੀਨ ਗੌਟਿੰਗਟਨ ਮੈਥੇਮੈਟੀਕਲ ਸੋਸਾਇਟੀ ਨੂੰ ਦਿੱਤੇ ਇੱਕ ਲੈਚਕਰ ਵਿੱਚ ਸਪੇਸਟਾਈਮ ਦੀ ਅਪਣੀ ਰੇਖਾਗਣਿਤਿਕ ਵਿਆਖਿਆ ਜਨਤਾ ਅੱਗੇ ਪ੍ਰਸਤੁਤ ਕੀਤੀ। ਇਸ ਲੈਕਚਰ ਦੇ ਮੂਲ ਵਰਜ਼ਨ ਵਿੱਚ, ਮਿੰਕੋਵਸਕੀ ਨੇ ਏਇਥਰ ਵਰਗੇ ਪੁਰਾਣੇ ਸ਼ਬਦਾਂ ਦੀ ਵਰਤੋਂ ਜਾਰੀ ਰੱਖੀ, ਪਰ “ਅੱਨਾਲਜ਼ ਔਫ ਫਿਜ਼ਿਕਸ” (Annalen der Physik) ਵਿੱਚ ਇਸ ਲੈਕਚਰ ਦੇ 1915 ਵਾਲ਼ੇ ਉਸਦੇ ਮਰਣੋਪ੍ਰਾਂਤ ਪ੍ਰਕਾਸ਼ਨ ਨੂੰ ਇਸ ਸ਼ਬਦ ਨੂੰ ਹਟਾਉਣ ਲਈ ਸੋਮਰਫੈਲਡ ਨੇ ਐਡਿਟ ਕੀਤਾ ਸੀ। ਸੋੱਮਰਫੈਲਡ ਨੇ ਇਸ ਲੈਕਚਰ ਦੇ ਪ੍ਰਕਾਸ਼ਿਤ ਰੂਪ ਨੂੰ ਵੀ ਐਡਿਟ ਕੀਤਾ, ਤਾਂ ਜੋ ਮਿੰਕੋਵਸਕੀ ਦੀ ਆਈਨਸਟਾਈਨ ਵਾਲੀ ਜੱਜਮੈਂਟ ਦੋਹਰਾਈ ਜਾ ਸਕੇ ਜਿਸ ਵਿੱਚ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਸਿਧਾਂਤ ਦਾ ਆਈਨਸਟਾਈਨ ਨੂੰ ਸਿਰਫ ਸਪਸ਼ਟਕਰਤਾ ਹੀ ਕਿਹਾ ਗਿਆ ਸੀ, ਜੋ ਇਸਦਾ ਮੁੱਖ ਵਿਆਖਿਆਕਾਰ ਸੀ।[23]
ਦਸੰਬਰ 21, 1907 ਨੂੰ, ਮਿੰਕੋਵਸਕੀ ਨੇ ਫੇਰ ਤੋਂ ਗੌਟਿੰਗਟਨ ਸੈਂਟੀਫਿਕ ਸੋਸਾਇਟੀ ਮੂਹਰੇ ਬੋਲਿਆ, ਅਤੇ ਸਤੰਬਰ 21, 1908 ਨੂੰ, ਮਿੰਕੋਵਸਕੀ ਨੇ ਅਪਣੀ ਪ੍ਰਸਿੱਧ ਗੱਲਬਾਤ, ਸਪੇਸ ਐਂਡ ਟਾਈਮ (Raum und Zeit),[25] ਜਰਮਨ ਸੋਸਾਇਟੀ ਔਫ ਸਾਇੰਟਿਸਟਸ ਐਂਡ ਫਿਜ਼ੀਸ਼ੀਅਨਜ਼ ਅੱਗੇ ਪੇਸ਼ ਕੀਤੀ।[note 4]
“ਸਪੇਸ ਅਤੇ ਟਾਈਮ” ਦੇ ਸ਼ੁਰੂਆਤੀ ਸਬਦ ਮਿੰਕੋਵਸਕੀ ਦੀ ਪ੍ਰਸਿੱਧ ਬਿਆਨਬਾਜ਼ੀ ਸਾਮਿਲ ਕਰਦਾ ਹੈ ਕਿ “ਇਸਲਈ, ਸਪੇਸ ਅਪਣੇ ਆਪ ਵਿੱਚ, ਅਤੇ ਟਾਈਮ ਅਪਣੇ ਆਪ ਵਿੱਚ ਸਿਰਫ ਕਿਸੇ ਪਰਛਾਵੇਂ ਤੱਕ ਪੂਰੀ ਤਰਾਂ ਘਟ ਕੇ ਸੀਮਤ ਹੋ ਜਾਣਗੇ, ਅਤੇ ਦੋਵਾਂ ਦੀ ਯੂਨੀਅਨ ਦੀ ਕੋਈ ਕਿਸਮ ਸੁਤੰਤਰਤਾ ਸੁਰੱਖਿਅਤ ਰੱਖੇਗੀ।”
ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਨੇ ਸਪੇਸਟਾਈਮ ਚਿੱਤਰਾਂ (Fig. 1‑4) ਦੀ ਪਹਿਲੀ ਜਨਤਕ ਪੇਸ਼ਕਸ਼ ਸ਼ਾਮਿਲ ਕੀਤੀ ਸੀ, ਅਤੇ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਦ੍ਰਸ਼ਨ ਸ਼ਾਮਿਲ ਕੀਤਾ ਸੀ। ਕਿ “ਸਥਿਰ ਅੰਤ੍ਰਾਲ” ਦੀ ਧਾਰਨਾ, ਇਸ ਅਨੁਭਵ-ਸਿੱਧ ਨਿਰੀਖਣ ਨਾਲ ਕਿ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਸੀਮਤ ਹੁੰਦੀ ਹੈ, ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਸੰਪੂਰਣਤਾ ਦੀ ਵਿਓਂਤਬੰਦੀ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ।[note 5]
ਆਈਨਸਟਾਈਨ, ਅਪਣੇ ਵੱਲੋਂ, ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਮਿੰਕੋਵਸਕੀ ਦੀ ਰੇਖਾਗਣਿਤਿਕ ਵਿਆਖਿਆ ਨੂੰ ਪਹਿਲਾਂ ਖਾਰਿਜ ਕਰਦਾ ਸੀ।, ਤੇ ਇਸਨੂੰ überflüssige Gelehrsamkeit (ਜਰੂਰਤ ਤੋਂ ਜਿਆਦਾ ਗਿਆਨ) ਕਹਿੰਦਾ ਸੀ। ਫੇਰ ਵੀ, 1907 ਵਿੱਚ ਸੁਰੂ ਕੀਤੀ ਜਾਣ ਵਾਲ਼ੀ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਾਸਤੇ ਉਸਦੀ ਰੀਸਰਚ ਨੂੰ ਪੂਰੀ ਕਰਨ ਦੇ ਚੱਕਰ ਵਿੱਚ, ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਰੇਖਾਗਣਿਤਿਕ ਵਿਆਖਿਆ ਮਹੱਤਵਪੂਰਨ ਹੋਣੀ ਸਾਬਤ ਹੋ ਗਈ, ਅਤੇ 1916 ਵਿੱਚ, ਆਈਨਸਟਾਈਨ ਨੇ ਮਿੰਕੋਵਸਕੀ ਪ੍ਰਤਿ ਅਪਣੀ ਸ਼ੰਕਾ ਪੂਰੀ ਤਰਾਂ ਸਵੀਕਾਰ ਕਰ ਲਈ, ਜਿਸਦੀ ਵਿਆਖਿਆ ਨੇ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਪ੍ਰਤਿ ਤਬਦੀਲੀ ਨੂੰ ਬਹੁਤ ਸੁਵਿਧਾ ਪ੍ਰਦਾਨ ਕੀਤੀ। [15]: 151–152 ਕਿਉਂਕਿ ਸਪੇਸਟਾਈਮ ਦੀਆਂ ਹੋਰ ਕਿਸਮਾਂ ਵੀ ਹੁੰਦੀਆਂ ਹਨ, ਜਿਵੇਂ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਵਕਰਿਤ ਸਪੇਸਟਾਈਮ, ਇਸਲਈ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਸਪੇਸਟਾਈਮ ਅੱਜਕੱਲ “ਮਿੰਕੋਵਸਕੀ ਸਪੇਸਟਾਈਮ” ਦੇ ਨਾਮਕ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ। ਜਾਣ-ਪਛਾਣ ਵੱਲ ਪਰਤੋ
ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ ਸਪੇਸਟਾਈਮ
[ਸੋਧੋ]
ਸਪੇਸਟਾਈਮ ਅਰਸੇ
[ਸੋਧੋ]ਤਿੰਨ-ਅਯਾਮਾਂ ਅੰਦਰ, ਦੋ ਬਿੰਦੂਆਂ ਦਰਮਿਆਨ ਦੂਰੀ ਨੂੰ ਪਾਈਥਾਗੋਰੀਅਨ ਥਿਊਰਮ ਵਰਤਦੇ ਹੋਏ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ:
ਭਾਵੇਂ ਦੋ ਦਰਸ਼ਕ, ਵੱਖਰੇ “ਕੋ-ਆਰਡੀਨੇਟ ਸਿਸਟਮ” ਵਰਤਦੇ ਹੋਏ ਦੋ ਬਿੰਦੂਆਂ ਦੀ x,y, ਅਤੇ z ਪੁਜੀਸ਼ਨ ਨੂੰ ਨਾਪ ਸਕਦੇ ਹਨ, ਫੇਰ ਵੀ ਬਿੰਦੂਆਂ ਦਰਮਿਆਨ ਦੂਰੀ ਦੋਵਾਂ ਦਰਸ਼ਕਾਂ ਵਾਸਤੇ ਇੱਕੋ ਜਿਹੀ ਰਹੇਗੀ (ਇਹ ਮੰਨਦੇ ਹੋਏ ਕਿ ਉਹ ਇੱਕੋ ਜਿਹੀਆਂ ਯੂਨਿਟਾਂ ਵਰਤ ਕੇ ਨਾਪ ਰਹੇ ਹਨ)। ਦੂਰੀ "ਇਨਵੇਰੀਅੰਟ (ਸਥਿਰ) ਰਹਿੰਦੀ ਹੈ।
ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ, ਫੇਰ ਵੀ, ਦੋ ਬਿੰਦੂਆਂ ਦਰਮਿਆਨ ਦੂਰੀ, ਲੌਰੰਟਜ਼ ਕੰਟ੍ਰੈਕਸਨ ਸਦਕਾ ਇੱਕੋ ਜਿਹੀ ਨਹੀਂ ਰਹਿੰਦੀ ਜੇਕਰ ਦੋ ਦਰਸ਼ਕਾਂ ਦੁਆਰਾ, ਉਦੋਂ ਨਾਪੀ ਜਾਵੇ ਜਦੋਂ ਇੱਕ ਦਰਸ਼ਕ ਗਤੀ ਕਰ ਰਿਹਾ ਹੋਵੇ। ਪ੍ਰਸਥਿਤੀ ਹੋਰ ਵੀ ਜਿਆਦਾ ਗੁੰਝਲਦਾਰ ਬਣ ਜਾਂਦੀ ਹੈ ਜੇਕਰ ਦੋਵੇਂ ਬਿੰਦੂ ਵਕਤ ਦੇ ਨਾਲ ਨਾਲ ਸਪੇਸ ਵਿੱਚ ਵੀ ਵੱਖਰੇ ਵੱਖਰੇ ਹੋਣ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਜੇਕਰ ਇੱਕ ਦਰਸ਼ਕ ਕਿਸੇ ਸਥਾਨ ਉੱਤੇ ਵਾਪਰ ਰਹੀਆਂ ਦੋ ਘਟਨਾਵਾਂ ਨੂੰ ਇੱਕੋ ਸਥਾਨ ਤੇ ਦੇਖਦਾ ਹੈ, ਪਰ ਵੱਖਰੇ ਵੱਖਰੇ ਵਕਤ ਤੇ ਦੇਖਦਾ ਹੈ, ਤਾਂ ਪਹਿਲੇ ਦਰਸ਼ਕ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਗਤੀਸ਼ੀਲ ਕੋਈ ਦੂਜਾ ਇਨਸਾਨ ਦੋਵੇਂ ਘਟਨਾਵਾਂ ਨੂੰ ਵੱਖਰੇ ਸਥਾਨਾਂ ਤੇ ਵਾਪਰਦਾ ਦੇਖੇਗਾ, ਕਿਉਂਕਿ (ਉਹਨਾਂ ਦੇ ਨਜ਼ਰੀਏ ਤੋਂ) ਉਹ ਸਟੇਸ਼ਨਰੀ ਹੁੰਦੇ ਹਨ, ਅਤੇ ਘਟਨਾ ਦੀ ਪੁਜੀਸਨ ਨੇੜੇ ਆ ਰਹੀ ਜਾਂ ਦੂਰ ਜਾ ਰਹੀ ਹੁੰਦੀ ਹੈ। ਇਸਤਰਾਂ, ਦੋ ਘਟਨਾਵਾਂ ਦਰਮਿਆਨ ਪ੍ਰਭਾਵੀ ਦੂਰੀ ਨੂੰ ਨਾਪਣ ਵਾਸਤੇ ਇੱਕ ਵੱਖਰਾ ਨਾਪ ਵਰਤਿਆ ਜਾਣਾ ਜਰੂਰੀ ਹੋ ਜਾਂਦਾ ਹੈ।
ਚਾਰ-ਅਯਾਮੀ ਸਪੇਸਟਾਈਮ ਅੰਦਰ, ਦੂਰੀ ਦਾ ਤੁੱਲ ਅਰਸਾ ਹੁੰਦਾ ਹੈ। ਭਾਵੇਂ ਟਾਈਮ ਇੱਕ ਚੌਥੇ ਅਯਾਮ ਦੇ ਰੂਪ ਵਿੱਚ ਆਉਂਦਾ ਹੈ, ਫੇਰ ਵੀ ਇਸਨੂੰ ਸਥਾਨਿਕ ਅਯਾਮਾਂ ਤੋਂ ਵੱਖਰੇ ਤਰੀਕੇ ਨਾਲ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਮਿੰਕੋਵਸਕੀ ਸਪੇਸ ਇਸੇ ਕਾਰਨ ਚਾਰ-ਅਯਾਮੀ ਯੁਕਿਲਡਨ ਸਪੇਸ ਤੋਂ ਮਹੱਤਵਪੂਰਨ ਪਹਿਲੂਆਂ ਵਿੱਚ ਵੱਖਰੀ ਹੁੰਦੀ ਹੈ। ਸਪੇਸ ਅਤੇ ਸਮੇਂ ਨੂੰ ਸਪੇਸਟਾਈਮ ਵਿੱਚ ਜੜ ਦੇਣ ਦਾ ਬੁਨਿਆਦੀ ਕਾਰਣ ਇਹ ਹੈ ਕਿ ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਵੱਖਰੇ ਤੌਰ ਤੇ ਇਨਵੇਰੀਅੰਟ ਨਹੀਂ ਹੁੰਦੇ, ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਢੁਕਵੀਆਂ ਹਾਲਤਾਂ ਵਿੱਚ, ਵੱਖਰੇ ਦਰਸ਼ਕ ਦੋ ਘਟਨਾਵਾਂ ਦਰਮਿਆਨ ਵਕਤ ਦੀ ਲੰਬਾਈ ਉੱਤੇ (ਟਾਈਮ ਡਿਲੇਸ਼ਨ ਕਾਰਣ) ਜਾਂ ਦੋਵੇਂ ਘਟਨਾਵਾਂ ਦਰਮਿਆਨ ਦੂਰੀ ਉੱਤੇ (ਲੈਂਥ ਕੰਟ੍ਰੈਕਸਨ ਕਾਰਣ) ਅਸਹਿਮਤ ਰਹਿਣਗੇ। ਪਰ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਸਪੇਸਟਾਈਮ ਅਰਸਾ ਨਾਮਕ ਇੱਕ ਨਵਾਂ ਇਨਵੇਰੀਅੰਟ ਮੁੱਹਈਆ ਕਰਵਾਉਂਦੀ ਹੈ, ਜੋ ਸਪੇਸ ਵਿੱਚ ਅਤੇ ਟਾਈਮ ਵਿੱਚ ਦੂਰੀਆਂ ਨੂੰ ਮਿਲਾਉਂਦਾ ਹੈ। ਸਾਵਧਾਨੀ ਨਾਲ ਵਕਤ ਅਤੇ ਦੂਰੀ ਨਾਪਣ ਵਾਲ਼ੇ ਸਾਰੇ ਦਰਸ਼ਕ ਕਿਸੇ ਵੀ ਦੋ ਘਟਨਾਵਾਂ ਦਰਮਿਆਨ ਇੱਕੋ ਜਿਹਾ ਸਪੇਸਟਾਈਮ ਅਰਸਾ ਖੋਜਣਗੇ।
ਮੰਨ ਲਓ ਇੱਕ ਔਬਜ਼ਰਵਰ ਅਜਿਹੀਆਂ ਦੋ ਘਟਨਾਵਾਂ ਨਾਪਦਾ ਹੈ ਜੋ ਵਕਤ ਵਿੱਚ ਅਤੇ ਇੱਕ ਸਥਾਨਿਕ ਦੂਰੀ ਰਾਹੀਂ ਵੱਖਰੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਫੇਰ ਦੋਵੇਂ ਘਟਨਾਵਾਂ ਦਰਮਿਆਨ ਸਪੇਸਟਾਈਮ ਅਰਸਾ ਸਪੇਸ ਵਿੱਚ ਇੱਕ ਦੂਰੀ ਅਤੇ ਵਕਤ ਵਿੱਚ ਇੱਕ ਅਰਸਾ ਰਾਹੀਂ ਵੱਖਰੀਆਂ ਵਾਪਰਦੀਆਂ ਹਨ:
- (ਜਾਂ ਤਿੰਨ ਸਪੇਸ ਡਾਇਮੈਨਸ਼ਨਾਂ ਵਾਸਤੇ, )
ਸਥਿਰਾਂਕ , ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ, ਦੂਰੀ ਨਾਪਣ ਵਾਸਤੇ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਯੂਨਿਟਾਂ (ਮੀਟਰਾਂ) ਨੂੰ, ਵਕਤ ਨੂੰ ਨਾਪਣ ਵਾਸਤੇ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਯੂਨਿਟਾਂ (ਸਕਿੰਟਾਂ) ਵਿੱਚ ਤਬਦੀਲ ਕਰਦਾ ਹੈ।
ਭਾਵੇਂ ਸੰਖੇਪਤਾ ਲਈ, ਅਰਸਾ ਸਮੀਕਰਨਾਂ ਨੂੰ ਡੈਲਟਿਆਂ ਤੋਂ ਬਗੈਰ ਹੀ ਦੇਖਿਆ ਜਾਂਦਾ ਹੈ, ਜੋ ਅੱਗੇ ਦੀ ਜਿਅਦਾਤਰ ਚਰਚਾ ਵਿੱਚ ਵੀ ਸਾਮਿਲ ਹੈ, ਫੇਰ ਵੀ ਸਰਵ ਸਧਾਰਨ ਤੌਰ ਤੇ ਇਹ ਸਮਝ ਲੈਣਾ ਬਣਦਾ ਹੈ ਕਿ, ਦਾ ਅਰਥ ਹੈ , ਆਦਿ। ਸਾਡਾ ਵਾਸਤਾ ਹਮੇਸ਼ਾਂ ਹੀ ਦੋ ਘਟਨਾਵਾਂ ਨਾਲ ਸਬੰਧਤ ਅਸਥਾਈ ਨਿਰਦੇਸ਼ਾਂਕ ਮੁੱਲਾਂ ਜਾਂ ਸਥਾਨਾਂ ਦੇ ਅੰਤਰਾਂ ਨਾਲ ਪੈਂਦਾ ਹੈ, ਅਤੇ ਕਿਉਂਕਿ ਕੋਈ ਵੀ ਤਰਜੀਹ ਵਾਲਾ ਮੂਲ ਬਿੰਦੂ (ਉਰਿਜਨ) ਨਹੀਂ ਹੁੰਦਾ, ਇਸਲਈ ਇਕਲੌਤਾ ਨਿਰਦੇਸ਼ਾਂਕ ਮੁੱਲ ਕੋਈ ਲਾਜ਼ਮੀ ਅਰਥ ਨਹੀਂ ਰੱਖਦਾ।
ਉੱਪਰ ਦਰਸਾਈ ਇਕੁਏਸ਼ਨ ਪਾਈਥਾਗੋਰੀਅਨ ਥਿਊਰਮ ਨਾਲ ਮਿਲਦੀ ਜੁਲਦੀ ਹੈ, ਸਿਰਫ ਅਤੇ ਰਕਮਾਂ ਦਰਮਿਆਨ ਇੱਕ ਮਾਈਨਸ ਦੇ ਚਿੰਨ ਦਾ ਹੀ ਫਰਕ ਹੈ। ਇਹ ਵੀ ਨੋਟ ਕਰੋ ਕਿ ਸਪੇਸਟਾਈਮ ਅਰਸਾ ਮਾਤਰਾ ਹੁੰਦੀ ਹੈ, ਨਾ ਕਿ ਖੁਦ । ਕਾਰਣ ਇਹ ਹੈ ਕਿ ਯੁਕਿਲਡਨ ਰੇਖਾਗਣਿਤ ਵਿੱਚ ਦੂਰੀਆਂ ਤੋਂ ਉਲਟ, ਮਿੰਕੋਵਸਕੀ ਸਪੇਸਟਾਈਮ ਅੰਦਰ ਅਰਸੇ ਨੈਗਟਿਵ ਵੀ ਹੋ ਸਕਦੇ ਹਨ। ਨੈਗਟਿਵ ਸੰਖਿਆਵਾਂ ਦੇ ਵਰਗਮੂਲਾਂ ਨਾਲ ਵਰਤਣ ਦੀ ਜਗਹ, ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਰਸਮੀ ਤੌਰ ਤੇ ਨੂੰ ਕਿਸੇ ਚੀਜ਼ ਦੇ ਵਰਗ ਹੋਣ ਨਾਲ਼ੋਂ, ਅਪਣੇ ਆਪ ਵਿੱਚ ਇੱਕ ਨਿਰਾਲਾ ਚਿੰਨ ਮੰਨਦੇ ਹਨ।[17]: 217
ਮਾਈਨਸ ਚਿੰਨ ਦੇ ਕਾਰਣ, ਦੋ ਵੱਖਰੀਆਂ ਘਟਨਾਵਾਂ ਦਰਮਿਆਨ ਸਪੇਸਟਾਈਮ ਅਰਸਾ ਜ਼ੀਰੋ ਹੋ ਸਕਦਾ ਹੈ। ਜੇਕਰ ਪੌਜ਼ਟਿਵ ਹੋਵੇ, ਤਾਂ ਸਪੇਸਟਾਈਮ ਅਰਸਾ ਟਾਈਮਲਾਈਕ ਕਹਾਉਂਦਾ ਹੈ, ਜਿਸਦਾ ਅਰਥ ਹੈ ਕਿ ਦੋ ਘਟਨਾਵਾਂ ਸਪੇਸ ਨਾਲੋਂ ਟਾਈਮ ਰਾਹੀਂ ਜਿਆਦਾ ਵੱਖਰੀਆਂ ਹਨ। ਜੇਕਰ ਨੈਗਟਿਵ ਹੋਵੇ, ਤਾਂ ਸਪੇਸਟਾਈਮ ਅਰਸਾ ਸਪੇਸਲਾਈਕ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਜਿਸਦਾ ਅਰਥ ਹੈ ਕਿ ਦੋ ਘਟਨਾਵਾਂ ਵਕਤ ਨਾਲ਼ੋਂ ਸਪੇਸ ਰਾਹੀਂ ਜਿਆਦਾ ਨਿੱਖੜਵੀਆਂ ਹਨ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਦੋ ਘਟਨਾਵਾਂ ਦਰਮਿਆਨ ਸਪੇਸਟਾਈਮ ਅਰਸਾ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਉੱਤੇ ਗਤੀਸ਼ੀਲ ਕਿਸੇ ਚੀਜ਼ ਦੀ ਸੰਸਾਰ ਰੇਖਾ ਉੱਤੇ ਜ਼ੀਰੋ ਹੁੰਦਾ ਹੈ। ਅਜਿਹੇ ਅਰਸੇ ਨੂੰ ਲਾਈਟਲਾਈਕ ਜਾਂ ਨੱਲ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਕਿਸੇ ਦੂਰ ਸਥਿਤ ਤਾਰੇ ਤੋਂ ਸਾਡੀ ਅੱਖ ਵਿੱਚ ਪਹੁੰਚੇ ਇੱਕ ਫੋਟੌਨ ਦੀ ਬਿਲਕੁਲ ਉਮਰ ਨਹੀਂ ਬੀਤੀ ਹੁੰਦੀ, ਭਾਵੇਂ ਉਸਦੇ ਲਾਂਘੇ ਵਿੱਚ ਉਸਨੇ (ਸਾਡੇ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਤੋਂ) ਸਾਲਾਂ ਬਿਤਾਏ ਹੁੰਦੇ ਹਨ।
ਸਿਰਫ ਇੱਕੋ ਸਪੇਸ ਅਤੇ ਇੱਕੋ ਟਾਈਮ ਨਿਰਦੇਸ਼ਾਂਕ ਵਾਲਾ ਇੱਕ ਸਪੇਸਟਾਈਮ ਚਿੱਤਰ ਵਿਸ਼ੇਸਤੌਰ ਤੇ ਵਾਹਿਆ ਜਾਂਦਾ ਹੈ। ਚਿੱਤਰ 2‑1 ਇੱਕੋ ਘਟਨਾ ਤੋਂ ਪੈਦਾ ਹੋ ਰਹੇ ਅਤੇ ਉਲਟੀਆਂ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਜਾ ਰਹੇ ਦੋ ਫੋਟੌਨਾਂ A ਅਤੇ B ਦੀਆਂ ਵਰਲਡ ਲਾਈਨਾਂ (ਯਾਨਿ ਕਿ, ਸਪੇਸਟਾਈਮ ਵਿੱਚ ਰਸਤੇ) ਸਮਝਾਉਂਦਾ ਇੱਕ ਸਪੇਸਟਾਈਮ ਚਿੱਤਰ ਪੇਸ਼ ਕਰਦਾ ਹੈ। ਇਸਦੇ ਨਾਲ ਨਾਲ, C ਲਾਈਨ, ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਤੋਂ ਧੀਮੀ ਗਤੀ ਨਾਲ ਯਾਤਰਾ ਕਰਦੀ ਕਿਸੇ ਚੀਜ਼ ਦੀ ਸੰਸਾਰ ਰੇਖਾ ਨੂੰ ਸਮਝਾਉ਼ਦੀ ਹੈ। ਵਰਟੀਕਲ ਟਾਈਮ ਨਿਰਦੇਸ਼ਾਂਕ ਦੁਆਰਾ ਇਸਤਰਾਂ ਸਕੇਲਬੱਧ ਕੀਤਾ ਗਿਆ ਹੈ ਤਾਂ ਜੋ ਇਸਦੀਆੰ ਉਹੀ ਯੂਨਿਟਾਂ ਹੋਣ (ਮੀਟਰਾਂ ਵਿੱਚ) ਜੋ ਹੌਰੀਜ਼ੌਨਟਲ ਸਪੇਸ ਨਿਰਦੇਸ਼ਾਂਕ ਦੀਆਂ ਹਨ। ਕਿਉਂਕਿ ਫੋਟੌਨ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਨਾਲ ਯਾਤਰਾ ਕਰਦੇ ਹਨ, ਇਸਲਈ ਇਹਨਾਂ ਦੀਆਂ ਸੰਸਾਰ ਰੇਖਾਵਾਂ ਦੀ ਢਲਾਣ ±1 ਦੀ ਹੁੰਦੀ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਕਿਸੇ ਫੋਟੌਨ ਦੁਆਰਾ ਯਾਤਰਾ ਕੀਤਾ ਗਿਆ ਖੱਬੇ ਜਾਂ ਸੱਜੇ ਪਾਸੇ ਵੱਲ ਦਾ ਹਰੇਕ ਮੀਟਰ, ਤਕਰੀਬਨ ਵਕਤ ਦੇ 3.3 ਨੈਨੋਸਕਿੰਟ ਲੈਂਦਾ ਹੈ।
ਨਾਮਕਰਨ ਉੱਤੇ ਨੋਟ: ਰਿਲੇਟੀਵਿਟੀ ਸਾਹਿਤ ਅੰਦਰ ਵਰਤੋਂ ਵਿੱਚ ਦੋ ਚਿੰਨ ਪ੍ਰੰਪ੍ਰਾਵਾਂ ਹਨ:
- ਅਤੇ
ਇਹ ਚਿੰਨ ਪ੍ਰੰਪਰਾਵਾਂ ਮੀਟ੍ਰਿਕ ਸਿਗਨੇਚਰਾਂ (+ − − −) ਅਤੇ (− + + +). ਨਾਲ ਜੁੜੀਆਂ ਹਨ। ਟਾਈਮ ਨਿਰਦੇਸ਼ਾਂਕ ਨੂੰ ਪਹਿਲੇ ਨਾਲ਼ੋਂ ਅਖੀਰਲੇ ਸਥਾਨ ਤੇ ਰੱਖਣ ਦਾ ਛੋਟਾ ਜਿਹਾ ਬਦਲਾਓ ਵੀ ਮੌਜੂਦ ਹੈ। ਅਧਿਐਨ ਦੇ ਖੇਤਰ ਅੰਦਰ ਦੋਵੇਂ ਪ੍ਰੰਪਰਾਵਾਂ ਵੱਡੇ ਪੱਧਰ ਤੇ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਰਹੀਆਂ ਹਨ। ਜਾਣ-ਪਛਾਣ ਵੱਲ ਪਰਤੋ
ਰੈਫ੍ਰੈਂਸ ਫਰੇਮਾਂ
[ਸੋਧੋ]ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ
ਵੱਖਰੀਆਂ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ ਅੰਦਰ ਸਾਪੇਖਿਕ ਤੌਰ ਤੇ ਗਤੀਸ਼ੀਲ ਔਬਜ਼ਰਵਰਾਂ ਦੁਆਰਾ ਲਏ ਗਏ ਨਾਪਾਂ ਦੀ ਤੁਲਨਾ ਕਰਨ ਵੇਲ਼ੇ, ਕਿਸੇ ਮਿਆਰੀ ਬਣਤਰ ਵਿੱਚ ਫ੍ਰੇਮਾਂ ਸਮੇਤ ਕੰਮ ਕਰਨਾ ਲਾਭਦਾਇਕ ਰਹਿੰਦਾ ਹੈ। ਚਿੱਤਰ. 2‑2 ਵਿੱਚ, ਦੋ ਗੈਲੀਲੀਅਨ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ (ਯਾਨਿ ਕਿ, ਪ੍ਰੰਪ੍ਰਿਕ 3-ਸਪੇਸ ਫ੍ਰੇਮਾਂ) ਨੂੰ ਸਾਪੇਖਿਕ ਗਤੀ ਵਿੱਚ ਦਿਖਾਇਆ ਗਿਆ ਹੈ। ਫ੍ਰੇਮ S ਪਹਿਲੇ ਔਬਜ਼ਰਵਰ O ਨਾਲ ਸਬੰਧਤ ਹੈ, ਅਤੇਫ੍ਰੇਮ S’ (ਜਿਸਨੂੰ "S ਪ੍ਰਾਈਮ" ਉੱਚਾਰਿਆ ਜਾਂਦਾ ਹੈ) ਦੂਜੇ ਔਬਜ਼ਰਵਰ O′ ਨਾਲ ਵਾਸਤਾ ਰੱਖਦੀ ਹੈ।
- ਫ੍ਰੇਮ S ਦੇ x, y, z ਧੁਰੇ, ਫ੍ਰੇਮ S’ ਦੇ ਸਬੰਧਤ ਪ੍ਰਾਈਮ ਕੀਤੇ ਗਏ ਧੁਰਿਆਂ ਪ੍ਰਤਿ ਸਮਾਂਤਰ ਰੱਖੇ ਗਏ ਹਨ।
- ਫ੍ਰੇਮ S′, ਫ੍ਰੇਮ S ਦੀ x-ਦਿਸ਼ਾ ਵੱਲ ਇੱਕ ਸਥਿਰ ਵਿਲੌਸਿਟੀ v ਨਾਲ ਗਤੀ ਕਰਦੀ ਹੈ ਜਿਵੇਂ ਫ੍ਰੇਮ S ਵਿੱਚ ਨਾਪੀ ਗਈ ਹੁੰਦੀ ਹੈ।
- ਫ੍ਰੇਮਾਂ S ਅਤੇ S′ ਦੇ ਉਰਿਜਨ ਉਦੋਂ ਮਿਲ ਜਾਂਦੇ ਹਨ ਜਦੋਂ ਫ੍ਰੇਮ S ਵਾਸਤੇ ਟਾਈਮ t = 0 ਹੁੰਦਾ ਹੈ ਅਤੇ ਫ੍ਰੇਮ S’ ਵਾਸਤੇ t′ = 0 ਹੁੰਦਾ ਹੈ।[7]: 107
ਚਿੱਤਰ. 2‑3a, ਚਿੱਤਰ. 2‑2 ਨੂੰ ਇੱਕ ਵੱਖਰੀ ਦਿਸ਼ਾ ਵਿੱਚ ਫੇਰ ਤੋਂ ਵਾਹੁੰਦਾ ਹੈ। ਚਿੱਤਰ. 2‑3b ਔਬਜ਼ਰਵਰ O ਦੇ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਤੋਂ ਇੱਕ ਸਪੇਸਟਾਈਮ ਡਾਇਗ੍ਰਾਮ ਨੂੰ ਸਮਝਾਉਂਦਾ ਹੈ। ਕਿਉਂਕਿ S ਅਤੇ S’ ਮਿਆਰੀ ਬਣਤਰ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ, ਇਸਲਈ ਇਹਨਾਂ ਦੇ ਮੂਲ ਬਿੰਦੂ ਵਕਤਾਂ t = 0 (ਫ੍ਰੇਮ S ਵਿੱਚ) ਅਤੇ t′ = 0 (ਫ੍ਰੇਮ S’ ਵਿੱਚ) ਉੱਤੇ ਆਪਸ ਵਿੱਚ ਮਿਲਦੇ ਹਨ। ct′ ਧੁਰਾ ਫ੍ਰੇਮ S’ ਵਿੱਚ ਘਟਨਾਵਾਂ ਰਾਹੀਂ ਗੁਜ਼ਰਦਾ ਹੈ ਜਿਸਦਾ x′ = 0 ਹੁੰਦਾ ਹੈ। ਪਰ x′ = 0 ਵਾਲ਼ੇ ਬਿੰਦੂ ਵਿਲੌਸਿਟੀ v ਨਾਲ ਫ੍ਰੇਮ S ਦੀ x-ਦਿਸ਼ਾ ਵਿੱਚ ਗਤੀ ਕਰ ਰਹੇ ਹੁੰਦੇ ਹਨ, ਤਾਂ ਜੋ ਇਹ ਜ਼ੀਰੋ ਤੋਂ ਇਲਾਵਾ ਕਿਸੇ ਹੋਰ ਵਕਤ ਉੱਤੇ ct ਧੁਰੇ ਉੱਤੇ ਆਪਸ ਵਿੱਚ ਨਾ ਮਿਲਣ। ਇਸਲਈ, ct′ ਧੁਰੇ ਨੂੰ ਹੇਠਾਂ ਲਿਖੇ ਐਂਗਲ਼ θ ਦੁਆਰਾ ct ਧੁਰੇ ਤੋਂ ਮੋੜ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ;
x′ ਧੁਰਾ ਵੀ x ਧੁਰੇ ਤੋਂ ਘੁਮਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਮੋੜ ਦੇ ਕੇਣ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਨ ਵਾਸਤੇ, ਅਸੀਂ ਫੇਰ ਤੋਂ ਯਾਦ ਕਰਦੇ ਹਾਂ ਕਿ ਕਿਸੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਤਰੰਗ ਦੀ ਸੰਸਾਰ ਰੇਖਾ ਦੀ ਢਲਾਣ ਹਮੇਸ਼ਾਂ ਹੀ ±1. Fig. 2‑3c ਔਬਜ਼ਰਵਰ O’ ਦੇ ਨਜ਼ਰੀਏ ਤੋਂ ਇੱਕ ਸਪੇਸਟਾਈਮ ਚਿੱਤਰ ਪੇਸ਼ ਕਰਦੀ ਹੈ। ਘਟਨਾ P, x′ = 0, ct′ = −a ਉੱਤੇ ਕਿਸੇ ਪ੍ਰਕਾਸ਼ ਤਰੰਗ ਦਾ ਨਿਕਾਸ ਪ੍ਰਸਤੁਤ ਕਰਦੀ ਹੈ। ਤਰੰਗ, ਪ੍ਰਕਾਸ਼ ਦੇ ਸੋਮੇ (ਘਟਨਾ Q) ਤੋਂ ਕਿਸੇ ਦੂਰੀ a ਜਿੰਨੀ ਦੂਰ ਸਥਿਰ ਕਿਸੇ ਦਰਪਣ ਤੋਂ ਪਰਿਵਰਤਿਤ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਪ੍ਰਕਾਸ਼ ਦੇ ਸੋਮੇ ਵੱਲ x′ = 0, ct′ = a (ਘਟਨਾ R) ਉੱਤੇ ਪਰਤ ਜਾਂਦੀ ਹੈ।
ਇਹੀ ਘਟਨਾਵਾਂ P, Q, R ਚਿੱਤਰ. 2‑3b ਵਿੱਚ ਔਬਜ਼ਰਵਰ O ਦੀ ਫ੍ਰੇਮ ਅੰਦਰ ਵਾਹੀਆਂ ਗਈਆਂ ਹਨ। ਪ੍ਰਕਾਸ਼ ਦੇ ਰਸਤਿਆਂ ਦੀਆਂ ਢਲਾਣਾਂ = 1 and −1 ਹਨ ਤਾਂ ਜੋ ΔPQR ਇੱਕ ਸਮਕੋਣ ਵਾਲ਼ੀ ਤਿਕੋਣ ਰਚਦੀ ਹੈ। ਕਿਉਂਕਿ OP = OQ = OR, ਇਸਲਈ x′ ਅਤੇ x ਦਰਮਿਆਨ ਕੋਣ ਜਰੂਰ ਹੀ θ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।[7]: 113–118
ਜਦੋਂਕਿ ਰੈਸਟ ਫ੍ਰੇਮ ਅਜਿਹੇ ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਵਾਲੇ ਧੁਰੇ ਰੱਖਦੀ ਹੈ ਜੋ ਸਮਕੋਣਾਂ ਤੇ ਮਿਲਦੇ ਹਨ, ਤਾਂ ਗਤੀਸ਼ੀਲ ਫ੍ਰੇਮ ਨੂੰ ਇੱਕ ਅਕਿਊਟ ਐਂਗਲ਼ ਉੱਤੇ ਮਿਲਣ ਵਾਲ਼ੇ ਧੁਰਿਆਂ ਨਾਲ ਵਾਹਿਆ ਜਾਂਦਾ ਹੈ। ਫ੍ਰੇਮਾਂ ਅਸਲ ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਹੀ ਹੁੰਦੀਆਂ ਹਨ। ਅਸਮਰੂਪਤਾ ਦਾ ਕਾਰਣ ਇਸ ਗੱਲ ਵਿੱਚ ਨਾ ਰੋਕੀ ਜਾ ਸਕਣ ਵਾਲ਼ੀ ਤੋੜ-ਮਰੋੜ ਹੁੰਦਾ ਹੈ ਕਿ ਸਪੇਸਟਾਈਮ ਨਿਰਦੇਸ਼ਾਂਕ ਕਿਸੇ ਕਾਰਟੀਜ਼ੀਅਨ ਪਲੇਨ ਉੱਤੇ ਕਿਵੇਂ ਮੈਪ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਅਤੇ ਓਸ ਅੰਦਾਜ਼ ਤੋਂ ਜਿਆਦਾ ਤਾਕਤਵਾਰ ਨਹੀਂ ਮੰਨਿਆ ਜਾਣਾ ਚਾਹੀਦਾ, ਜਿਸ ਵਿੱਚ, ਧਰਤੀ ਦੀ ਇੱਕ ਮਰਕੇਟਰ ਪ੍ਰੋਜੈਕਸ਼ਨ ਉੱਤੇ ਮੈਪ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹੋਣ, ਪੋਲਾਂ (ਗ੍ਰੀਨਲੈਂਡ ਅਤੇ ਅੰਟਾਰਕਟਿਕਾ) ਨਜ਼ਦੀਕ ਧਰਤੀ ਦੇ ਪੁੰਜਾਂ ਦੇ ਸਾਪੇਖਿਕ ਅਕਾਰ ਭੂ-ਮੱਧ-ਰੇਖਾ ਨੇੜੇ ਧਰਤੀ ਪੁੰਜਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਉੱਚੇ ਤੌਰ ਤੇ ਭਾਰੀ (ਵਧੇ) ਹੁੰਦੇ ਹਨ। ਜਾਣ-ਪਛਾਣ ਵੱਲ ਪਰਤੋ
ਲਾਈਟ ਕੋਨ
[ਸੋਧੋ]
ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ
ਚਿੱਤਰ. 2-4 ਵਿੱਚ, ਘਟਨਾ O ਕਿਸੇ ਸਪੇਸਟਾਈਮ ਚਿੱਤਰ ਦੇ ਮੂਲ ਬਿੰਦੂ ਤੇ ਹੈ, ਅਤੇ ਦੋ ਤਿਰਛੀਆਂ ਰੇਖਾਵਾਂ ਮੂਲ ਘਟਨਾ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਜ਼ੀਰੋ ਸਪੇਸਟਾਈਮ ਅਰਸਾ ਰੱਖਣ ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਘਟਨਾਵਾਂ ਪ੍ਰਸਤੁਤ ਕਰਦੀਆਂ ਹਨ। ਇਹ ਦੋ ਰੇਖਾਵਾਂ ਓਹ ਚੀਜ਼ ਰਚਦੀਆਂ ਹਨ ਜਿਸਨੂੰ ਘਟਨਾ O ਦੀ ਲਾਈਟ ਕੋਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਕਿਉਂਕਿ ਇੱਕ ਦੂਜੀ ਸਪੈਸ਼ੀਅਲ ਡਾਇਮੈਨਸ਼ਨ (ਚਿੱਤਰ. 2‑5) ਜੋੜਨ ਨਾਲ ਇਹ ਦਿੱਖ ਬਣ ਜਾਂਦੀ ਹੈ ਕਿ ਦੋਵੇਂ ਸਮਕੋਣ ਚੱਕਰਾਕਾਰ ਕੋਨਾਂ ਅਪਣੇ ਅਪਾਈਸਾਂ O ਉੱਤੇ ਮਿਲਦੀਆਂ ਹਨ। ਇੱਕ ਕੋਨ ਭਵਿੱਖ (t>0) ਵੱਲ ਫੈਲਦੀ ਹੈ, ਤੇ ਦੂਜੀ ਕੋਨ ਭੂਤਕਾਲ (t<0) ਵੱਲ ਜਾਂਦੀ ਹੈ।
ਇੱਕ ਪ੍ਰਕਾਸ਼ (ਦੋਹਰੀ) ਕੋਨ ਸਪੇਸਟਾਈਮ ਨੂੰ ਇਸਦੇ ਅਪੈਕਸ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਵੱਖਰੇ ਖੇਤਰਾਂ ਵਿੱਚ ਵਿਭਾਜਿਤ ਕਰਦੀ ਹੈ। ਭਵਿੱਖ ਲਾਈਟ ਕੋਨ ਦਾ ਅੰਦਰੂਨੀ ਹਿੱਸਾ ਉਹਨਾਂ ਸਾਰੀਆਂ ਘਟਨਾਵਾਂ ਦਾ ਬਣਿਆ ਹੁੰਦਾ ਹੈ ਜੋ ਲਾਈਟਸਪੀਡ ਉੱਤੇ ਉਹਨਾਂ ਦੇ ਸਪੈਸ਼ੀਅਲ ਡਿਸਟੈਂਸ ਨੂੰ ਪਾਰ ਕਰਨ ਵਾਸਤੇ ਲਾਜ਼ਮੀ ਵਕਤ ਨਾਲ਼ੋਂ ਵੱਧ ਟਾਈਮ (ਅਸਥਾਈ ਦੂਰੀ) ਰਾਹੀਂ ਅਪੈਕਸ ਤੋਂ ਵੱਖਰੀਆਂ ਹੁੰਦੀਆਂ ਹਨ; ਇਹ ਘਟਨਾਵਾਂ ਘਟਨਾ O ਦੇ ਟਾਈਮਲਾਈਕ ਭਵਿੱਖ ਰਚਦੀਆਂ ਹਨ। ਇਸੇਤਰਾਂ, ਭੂਤਕਾਲ ਲਾਈਟ ਕੋਨ ਦੀਆਂ ਅੰਦਰੂਨੀ ਘਟਨਾਵਾਂ ਟਾਈਮਲਾਈਕ ਭੂਤਕਾਲ ਦੁਆਰਾ ਰਚੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਇਸਲਈ ਟਾਈਮਲਾਈਕ ਅਰਸਿਆਂ ਵਿੱਚ Δct, Δx ਤੋਂ ਜਿਆਦਾ ਵੱਡਾ ਹੁੰਦਾ ਹੈ, ਜੋ ਟਾਈਮਲਾਈਕ ਅਰਸਿਆਂ ਨੂੰ ਪੌਜ਼ੀਟਿਵ ਬਣਾ ਦਿੰਦਾ ਹੈ। ਲਾਈਟਕੋਨ ਦਾ ਬਾਹਰੀ ਖੇਤਰ ਅਜਿਹੀਆਂ ਘਟਨਾਵਾਂ ਦਾ ਰਚਿਆ ਹੁੰਦਾ ਹੈ ਜੋ ਘਟਨਾ O ਤੋਂ ਕਿਸੇ ਦਿੱਤੇ ਹੋਏ ਸਮੇਂ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਉੱਤੇ ਪਾਰ ਕੀਤੀ ਜਾਣ ਵਾਲ਼ੀ ਸਪੇਸ ਤੋਂ ਜਿਆਦਾ ਸਪੇਸ ਰਾਹੀਂ ਵੱਖਰੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਹ ਘਟਨਾਵਾਂ ਘਟਨਾ O ਦਾ ਸਪੇਸਲਾਈਕ ਖੇਤਰ ਕਿਹਾ ਜਾਣ ਵਾਲਾ ਖੇਤਰ ਰਚਦੀਆਂ ਹਨ, ਜੋ ਚਿੱਤਰ. 2‑4. ਵਿੱਚ “ਹੋਰ ਸਭ ਬਾਕੀ ਕਿਸੇ ਜਗਹ” ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਖੁਦ ਲਾਈਟ ਕੋਨ ਉੱਤੇ ਘਟਨਾਵਾਂ ਨੂੰ O ਤੋਂ ਲਾਈਟਲਾਈਕ (ਜਾਂ “ਨੱਲ ਸੈਪਰੇਟਿਡ”) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਸਪੇਸਟਾਈਮ ਅਰਸੇ ਦੀ ਸਥਿਰਤਾ ਸਦਕਾ, ਸਾਰੇ ਔਬਜ਼ਰਵਰ (ਨਿਰੀਖਕ) ਕਿਸੇ ਦਿੱਤੇ ਹੋਈ ਘਟਨਾ ਨੂੰ ਇੱਕੋ ਜਿਹੀ ਲਾਈਟ ਕੋਨ ਪ੍ਰਦਾਨ ਕਰਨਗੇ, ਅਤੇ ਇਸ ਕਰਕੇ ਸਪੇਸਟਾਈਮ ਦੀ ਇਸ ਵੰਡ ਉੱਤੇ ਸਹਿਮਤ ਹੋਣਗੇ।[17]: 220 ਲਾਈਟ ਕੋਨ ਕਾਰਣਾਤਮਿਕਤਾ ਦੀ ਧਾਰਨਾ ਅੰਦਰ ਇੱਕ ਲਾਜ਼ਮੀ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦੀ ਹੈ। O ਦੇ ਪੁਜੀਸ਼ਨ ਅਤੇ ਸਮੇਂ ਤੋਂ D (ਚਿੱਤਰ. 2‑4) ਦੇ ਪੁਜੀਸ਼ਨ ਅਤੇ ਸਮੇਂ ਤੱਕ ਲਾਈਟ-ਸਪੀਡ-ਤੋਂ-ਧੀਮੀ ਗਤੀ ਨਾਲ ਕਿਸੇ ਸੰਕੇਤ ਦੁਆਰਾ ਯਾਤਰਾ ਕਰਨੀ ਸੰਭਵ ਹੈ। ਇਸ ਕਰਕੇ ਘਟਨਾ O ਵਾਸਤੇ ਘਟਨਾ D ਉੱਤੇ ਇੱਕ ਕਾਰਣਾਤਮਿਕ ਅਸਰ ਕਰਨਾ ਸੰਭਵ ਹੋ ਜਾਂਦਾ ਹੈ। ਭਵਿੱਖ ਦੀ ਲਾਈਟ ਕੋਨ ਸਾਰੀਆਂ ਅਜਿਹੀਆਂ ਘਟਨਾਵਾਂ ਰੱਖਦੀ ਹੈ ਜੋ O ਰਾਹੀਂ ਕਾਰਣਾਤਮਿਕ ਤੌਰ ਤੇ ਅਸਰ ਪੁਆ ਸਕਦੀਆਂ ਹਨ। ਇਸੇ ਤਰਾਂ, A ਦੀ ਪੁਜੀਸ਼ਨ ਅਤੇ ਸਮੇਂ ਤੋਂ O ਦੇ ਪੁਜੀਸ਼ਨ ਅਤੇ ਸਮੇਂ ਤੱਕ ਕਿਸੇ ਸਿਗਨਲ ਦੁਆਰਾ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਤੋਂ ਘੱਟ ਸਪੀਡ ਤੇ ਸਫਰ ਕਰਨਾ ਸੰਭਵ ਹੈ। ਭੂਤਕਾਲ ਲਾਈਟ ਕੋਨ O ਉੱਤੇ ਇੱਕ ਕਾਰਣਾਤਮਿਕ ਅਸਰ ਪਾ ਸਕਣ ਵਾਲੀਆਂ ਸਭ ਘਟਨਾਵਾਂ ਦੀ ਬਣਦੀ ਹੈ। ਇਸਦੀ ਤੁਲਨਾ ਵਿੱਚ, ਇਹ ਮੰਨਦੇ ਹੋਏ ਕਿ ਸਿਗਨਲ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਤੋਂ ਤੇਜ਼ ਸਫਰ ਨਹੀਂ ਕਰ ਸਕਦੇ, ਕੋਈ ਵੀ ਘਟਨਾ, ਜਿਵੇਂ ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ B or C, ਜੋ ਸਪੇਸਲਾਈਕ ਖੇਤਰ ਵਿੱਚ ਹੈ (ਬਾਕੀ ਕਿਸੇ ਸਥਾਨ ਤੇ), ਨਾ ਘਟਨਾ O ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰ ਸਕਦੀ ਹੈ, ਅਤੇ ਨਾ ਹੀ ਘਟਨਾ O ਤੋਂ ਅਜਿਹੀ ਸਿਗਨਲ ਪ੍ਰਣਾਲ਼ੀ ਅਪਣਾ ਕੇ ਪ੍ਰਭਾਵਿਤ ਹੋ ਸਕਦੀ ਹੈ। ਇਸ ਮਾਨਤਾ ਅਧੀਨ, ਘਟਨਾ O ਅਤੇ ਕਿਸੇ ਲਾਈਟ ਕੋਨ ਦੇ ਸਪੇਸਲਾਈਕ ਖੇਤਰ ਵਿੱਚ ਹੁੰਦੀ ਕਿਸੇ ਘਟਨਾ ਦਰਮਿਆਨ ਕੋਈ ਵੀ ਕਾਰਣਾਤਮਿਕ ਸਬੰਧ ਵਿੱਚ ਸ਼ਾਮਿਲ ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।[26] ਜਾਣ-ਪਛਾਣ ਵੱਲ ਪਰਤੋ
ਤਤਕਾਲੀਨਤਾ ਦੀ ਸਾਪੇਖਿਕਤਾ
[ਸੋਧੋ]ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ
ਸਾਰੇ ਔਬਜ਼ਰਵਰ ਸਹਿਮਤ ਹੋਣਗੇ ਕਿ ਕਿਸੇ ਦਿੱਤੀ ਹੋਈ ਘਟਨਾ ਵਾਸਤੇ, ਦਿੱਤੀ ਹੋਈ ਘਟਨਾ ਦੀ ਭਵਿੱਖ ਲਾਈਟ ਕੋਨ ਅੰਦਰ ਕੋਈ ਘਟਨਾ, ਦਿੱਤੀ ਹੋਈ ਘਟਨਾ ਤੋਂ ਬਾਦ ਵਾਪਰਦੀ ਹੈ। ਇਸੇਤਰਾਂ, ਕਿਸੇ ਵੀ ਦਿੱਤੀ ਹੋਈ ਘਟਨਾ ਵਾਸਤੇ, ਭੂਤਕਾਲ ਲਾਈਟ ਕੋਨ ਅੰਦਰ ਕੋਈ ਘਟਨਾ, ਦਿੱਤੀ ਹੋਈ ਘਟਨਾ ਤੋਂ ਪਹਿਲਾਂ ਵਾਪਰਦੀ ਹੈ। ਟਾਈਮ-ਲਾਈਕ-ਵੱਖਰੀਆਂ ਕੀਤੀਆਂ ਘਟਨਾਵਾਂ ਵਾਸਤੇ, ਪਹਿਲਾਂ-ਬਾਦ ਸਬੰਧ ਤਬਦੀਲ ਨਹੀਂ ਹੁੰਦੇ, ਇਸ ਗੱਲ ਨਾਲ ਕੋਈ ਫਰਕ ਨਹੀਂ ਪੈਂਦਾ ਕਿ ਔਬਜ਼ਰਵਰ ਦੀ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਕਿਹੜੀ ਹੈ, ਯਾਨਿ ਕਿ, ਔਬਜ਼ਰਵਰ ਕਿਸੇ ਵੀ ਤਰਾਂ ਗਤੀ ਕਰ ਰਿਹਾ ਹੋਵੇ। ਇਹ ਪ੍ਰਸਥਿਤੀ ਸਪੇਸਲਾਈਕ-ਵੱਖਰੀਆਂ ਕੀਤੀਆਂ ਘਟਨਾਵਾਂ ਵਾਸਤੇ ਬਹੁਤ ਵੱਖਰੀ ਹੁੰਦੀ ਹੈ। v = 0 ਉੱਤੇ ਗਤੀਸ਼ੀਲ ਕਿਸੇ ਔਬਜ਼ਰਵਰ ਦੀ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਤੋਂ ਚਿੱਤਰ. 2‑4 ਵਾਹਿਆ ਗਿਆ ਹੈ। ਇਸ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਤੋਂ, ਘਟਨਾ C, ਘਟਨਾ O, ਤੋਂ ਬਾਦ ਵਾਪਰਦੀ ਹੈ ਅਤੇ ਘਟਨਾ B, ਘਟਨਾ O ਤੋਂ ਪਹਿਲਾਂ ਵਾਪਰਦੀ ਦੇਖੀ ਜਾਂਦੀ ਹੈ। ਕਿਸੇ ਵੱਖਰੀ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਤੋਂ, ਇਹਨਾਂ ਗੈਰ-ਕਾਰਣਾਤਮਿਕ-ਸਬੰਧਤ ਘਟਨਾਵਾਂ ਦਾ ਕ੍ਰਮ ਉਲਟ ਹੋ ਸਕਦਾ ਹੈ। ਖਾਸ ਕਰਕੇ, ਇਹ ਨੋਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਕਿ ਜੇਕਰ ਦੋ ਘਟਨਾਵਾਂ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਅੰਦਰ ਤਤਕਾਲੀਨ ਹੁੰਦੀਆਂ ਹੋਣ, ਤਾਂ ਉਹ ਲਾਜ਼ਮੀ ਤੌਰ ਤੇ, ਕਿਸੇ ਸਪੇਸਲਾਈਕ ਅਰਸੇ ਦੁਆਰਾ ਵੱਖਰੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਇਸਤਰਾਂ ਗੈਰ-ਕਾਰਣਾਤਮਿਕ ਤੌਰ ਤੇ ਸਬੰਧਤ ਹੁੰਦੀਆਂ ਹਨ। ਨਿਰੀਖਣ ਕਿ ਤਤਕਾਲੀਨਤਾ ਸ਼ੁੱਧ ਨਹੀਂ ਹੁੰਦੀ, ਸਗੋਂ ਔਬਜ਼ਰਵਰ ਦੀ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ, ਨੂੰ ਤਤਕਾਲੀਨਤਾ ਦੀ ਰਿਲੇਟੀਵਿਟੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।[27]
ਚਿੱਤਰ. 2-6 ਤਤਕਾਲੀਨਤਾ ਦੀ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਵਿਸ਼ਲੇਸ਼ਣ ਅੰਦਰ ਸਪੇਸਟਾਈਮ ਚਿੱਤਰਾਂ ਦੀ ਵਰਤੋਂ ਸਮਝਾਉਂਦਾ ਹੈ। ਸਪੇਸਟਾਈਮ ਅੰਦਰਲੀਆਂ ਘਟਨਾਵਾਂ ਇਨਵੇਰੀਅੰਟ ਹੁੰਦੀਆਂ ਹਨ, ਪਰ “ਕੋ-ਆਰਡੀਨੇਟ ਫਰੇਮਾਂ” ਬਦਲ ਜਾਂਦੀਆਂ ਹਨ ਜਿਵੇਂ ਚਿੱਤਰ. 2‑3 ਵਾਸਤੇ ਉੱਪਰ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਤਿੰਨੇ ਘਟਨਾਵਾਂ (A, B, C), v = 0 ਉੱਤੇ ਗਤੀਸ਼ੀਲ ਕਿਸੇ ਔਬਜ਼ਰਵਰ ਦੀ ਰੈਫ਼ਰੈਂਸ ਫ੍ਰੇਮ ਤੋਂ ਤਤਕਾਲੀਨ ਹੁੰਦੀਆਂ ਹਨ। v = 0.3 c ਉੱਤੇ ਗਤੀਸ਼ੀਲ ਕਿਸੇ ਔਬਜ਼ਰਵਰ ਦੀ ਰੈਫ਼੍ਰੈਂਸ ਫ੍ਰੇਮ ਤੋਂ, ਇਹ ਘਟਨਾਵਾਂ, ਕ੍ਰਮ v = 0.3 c ਵਿੱਚ ਵਾਪਰਦੀਆਂ ਦਿਸਦੀਆਂ ਹਨ। v = −0.5 c ਉੱਤੇ ਗਤੀਸ਼ੀਲ ਕਿਸੇ ਔਬਜ਼ਰਵਰ ਦੀ ਰੈਫ਼੍ਰੈਂਸ ਫ੍ਰੇਮ ਤੋਂ, ਇਹਨਾਂ ਘਟਨਾਵਾਂ ਦੇ ਵਾਪਰਦੇ ਦਿਸਣ ਦਾ ਕ੍ਰਮ A, B, C ਹੁੰਦਾ ਹੈ। ਚਿੱਟੀ ਰੇਖਾ ਔਬਜ਼ਰਵਰ ਦੇ ਭਵਿੱਖ ਵੱਲ ਔਬਜ਼ਰਵਰ ਦੇ ਪਾਸਟ ਤੋਂ ਗਤੀਸ਼ੀਲ ਹੁੰਦੀ ਹੋਈ “ਤਤਕਾਲੀਨਤਾ ਦੀ ਸਤਹਿ” ਨੂੰ ਇਸ ਉੱਤੇ ਰੋਸ਼ਨ ਹੁੰਦੀਆਂ ਪ੍ਰਸਤੁਤ ਕਰਦੀ ਹੈ। ਭੂਰਾ ਖੇਤਰ ਔਬਜ਼ਰਵਰ ਦੀ ਲਾਈਟ ਕੋਨ ਹੁੰਦੀ ਹੈ, ਜੋ ਸਥਿਰ (ਇਨਵੇਰੀਅੰਟ) ਰਹਿੰਦਾ ਹੈ।
ਇੱਕ ਸਪੇਸਲਾਈਕ ਸਪੇਸਟਾਈਮ ਅਰਸਾ ਉੰਨਾ ਹੀ ਡਿਸਟੈਂਸ ਦਿੰਦਾ ਹੈ ਜਿੰਨਾ ਕੋਈ ਔਬਜ਼ਰਵਰ ਨਾਪੇਗਾ ਜੇਕਰ ਘਟਨਾਵਾਂ ਨੂੰ ਔਬਜ਼ਰਵਰ ਪ੍ਰਤਿ ਤਤਕਾਲੀਨ ਨਾਪਿਆ ਜਾਵੇ। ਇਸਤਰਾਂ ਕੋਈ ਸਪੇਸਲਾਈਕ ਸਪੇਸਟਾਈਮ ਅਰਸਾ “ਪ੍ਰੌਪਰ ਡਿਸਟੈਂਸ”, ਯਾਨਿ ਕਿ, ਸ਼ੁੱਧ ਦੂਰੀ = ਦਾ ਇੱਕ ਨਾਪ ਮੁਹੱਈਆ ਕਰਵਾਉਂਦਾ ਹੈ। ਇਸੇਤਰਾਂ, ਇੱਕ ਟਾਈਮਲਾਈਕ ਸਪੇਸਟਾਈਮ ਅਰਸਾ ਓੰਨਾ ਹੀ ਸਮੇਂ ਦਾ ਨਾਪ ਦਿੰਦਾ ਹੈ ਜਿੰਨਾ ਕਿਸੇ ਦਿੱਤੀ ਹੋਈ ਸੰਸਾਰ ਰੇਖਾ ਦੇ ਨਾਲ ਨਾਲ ਗਤੀਸ਼ੀਲ ਕੋਈ ਕਲੌਕ ਵਧਦੀ ਜਾਂ ਘਟਦੀ ਹੋਈ ਟਿੱਕ ਕਰਦਾ ਹੋਇਆ ਪ੍ਰਸਤੁਤ ਕਰੇਗਾ। ਇਸਤਰਾਂ ਕੋਈ ਟਾਈਮਲਾਈਕ ਸਪਰ ਅਰਸਾ ਪ੍ਰੌਪਰ ਟਾਈਮ = ਦਾ ਇੱਕ ਨਾਪ ਮੁਹੱਈਆ ਕਰਵਾਉਂਦਾ ਹੈ।[17]: 220–221 ਜਾਣ-ਪਛਾਣ ਵੱਲ ਪਰਤੋ
ਇਨਵੇਰੀਅੰਟ ਹਾਈਪ੍ਰਬੋਲਾ
[ਸੋਧੋ]ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ
ਸਧਾਰਨ ਯੁਕਿਲਡਨ ਸਪੇਸ ਅੰਦਰ, ਕਿਸੇ ਮੂਲ ਬਿੰਦੂ ਤੋਂ ਬਰਾਬਰ ਦੂਰੀ ਤੇ ਸਥਿਤ ਬਿੰਦੂਆਂ ਦਾ ਸੈੱਟ, ਕੋਈ ਚੱਕਰ (ਦੋ ਅਯਾਮਾਂ ਵਿੱਚ), ਜਾਂ ਕੋਈ ਸਫੀਅਰ (ਤਿੰਨ-ਅਯਾਮਾਂ ਵਿੱਚ) ਰਚਦਾ ਹੈ। ਮਿੰਕੋਵਸਕੀ ਸਪੇਸਟਾਈਮ ਵਿੱਚ, ਮੂਲ ਬਿੰਦੂ ਤੋਂ ਕਿਸੇ ਸਥਿਰ ਸਪੇਸਟਾਈਮ ਅਰਸੇ ਉੱਤੇ ਬਿੰਦੂ, ਹੇਠਾਂ ਲਿਖੀ ਇਕੁਏਸ਼ਨ ਦੁਆਰਾ ਦਿੱਤੀ ਜਾਂਦੀ ਇੱਕ ਕਰਵ (ਵਕਰ) ਰਚਦੇ ਹਨ;
ਉੱਪਰਲੀ ਉਦਾਹਰਨ ਇੱਕ x–ct ਸਪੇਸਟਾਈਮ ਡਾਇਗ੍ਰਾਮ ਅੰਦਰ ਕਿਸੇ ਹਾਈਪ੍ਰਬੋਲੇ ਦੀ ਇਕੁਏਸ਼ਨ ਹੈ, ਜਿਸਨੂੰ ਇਨਵੇਰੀਅੰਟ ਹਾਈਪ੍ਰਬੋਲਾ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਚਿੱਤਰ. 2-7a ਵਿੱਚ, ਗੁਲਾਬੀ ਰੰਗ ਵਾਲਾ ਹਾਈਪ੍ਰਬੋਲਾ ਮੂਲ ਬਿੰਦੂ ਤੋਂ ਬਰਾਬਰ ਸਪੇਸਲਾਈਕ ਵਖਰੇਵੇਂ ਵਾਲੀਆਂ ਘਟਨਾਵਾਂ ਨੂੰ ਜੋੜਦਾ ਹੈ, ਜਦੋਂਕਿ ਹਰੇ ਰੰਗਾ ਵਾਲੇ ਹਾਈਪ੍ਰਬੋਲੇ ਮੂਲ ਬਿੰਦੂ ਤੋਂ ਇੱਕ ਸਮਾਨ ਟਾਈਮਲਾਈਕ ਵਖਰੇਵੇਂ ਵਾਲੀਆਂ ਘਟਨਾਵਾਂ ਨੂੰ ਜੋੜਦੇ ਹਨ।
ਨਾਮਕਰਨ ਬਾਰੇ ਨੋਟ: ਗੁਲਾਬੀ ਹਾਈਪ੍ਰਬੋਲੇ, ਜੋ x ਧੁਰੇ ਨੂੰ ਪਾਰ ਕਰਦੇ ਹਨ, ਟਾਈਮਲਾਈਕ (ਸਪੇਲਾਈਕ ਨਹੀਂ) ਹਾਈਪ੍ਰਬੋਲੇ ਕਹੇ ਜਾਂਦੇ ਹਨ ਕਿਉਂਕਿ ਇਹ ਹਾਈਪ੍ਰਬੋਲੇ ਉਹ ਵਾਸਤਵਿਕ ਰਸਤੇ ਪ੍ਰਸਤੁਤ ਕਰਦੇ ਹਨ ਜਿਹਨਾਂ ਨੂੰ ਸਪੇਸਟਾਈਮ ਅੰਦਰ ਕਣਾਂ ਨੂੰ ਪ੍ਰਵੇਗਿਤ ਕਰਕੇ ਕੱਟਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਦੂਜੇ ਪਾਸੇ, ਹਰੇ ਹਾਈਪ੍ਰਬੋਲੇ, ਜੋ ct ਧੁਰਾ ਪਾਰ ਕਰਦੇ ਹਨ, ਸਪੇਸਲਾਈਕ ਹਾਈਪ੍ਰਬੋਲੇ ਕਹੇ ਜਾਂਦੇ ਹਨ ਕਿਉਂਕਿ ਹਾਈਪ੍ਰਬੋਲਿਆਂ ਦੇ ਨਾਲ ਨਾਲ ਦੀ ਦਿਸ਼ਾ ਵਾਲ਼ੇ ਸਾਰੇ ਅਰਸੇ ਸਪੇਸਲਾਈਕ ਅਰਸੇ ਹੁੰਦੇ ਹਨ।
ਚਿੱਤਰ. 2‑7b ਦਿਖਾਉਂਦਾ ਹੈ ਕਿ ਜਦੋਂ ਸਪੇਸ ਦੀ ਕਿਸੇ ਵਾਧੂ ਡਾਇਮੈਨਸ਼ਨ ਅੰਦਰ ਦੇਖਿਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਟਾਈਮਲਾਈਕ ਇਨਵੇਰੀਅੰਟ ਹਾਈਪ੍ਰਬੋਲੇ ਇੱਕ ਸ਼ੀਟ ਦੇ ਹਾਈਪ੍ਰਬੋਲੋਆਇਡ ਰਚਦੇ ਹਨ, ਜਦੋਂਕਿ ਸਪੇਸਲਾਈਕ ਇਨਵੇਰੀਅੰਟ ਹਾਈਪ੍ਰਬੋਲੇ ਦੋ ਸ਼ੀਟਾਂ ਦੇ ਹਾਈਪ੍ਰਬੋਲੋਆਇਡ ਰਚਦੇ ਹਨ। ਜਾਣ-ਪਛਾਣ ਵੱਲ ਪਰਤੋ
ਟਾਈਮ ਡਿਲੇਸ਼ਨ ਅਤੇ ਲੈਂਥ ਕੰਟ੍ਰੈਕਸ਼ਨ
[ਸੋਧੋ]ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ
ਚਿੱਤਰ. 2-8 ਉਹਨਾਂ ਸਾਰੀਆਂ ਘਟਨਾਵਾਂ ਵਾਸਤੇ ਇਨਵੇਰੀਅੰਟ ਹਾਈਪ੍ਰਬੋਲੇ ਸਮਝਾਉਂਦਾ ਹੈ ਜਿਹਨਾਂ ਉੱਤੇ ਮੂਲ ਬਿੰਦੂ ਤੋਂ 5 ਮੀਟਰ (ਤਕਰੀਬਨ 1.67×10−8 s) ਦੇ ਪ੍ਰੌਪਰ ਟਾਈਮ ਵਿੱਚ ਪਹੁੰਚਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਵੱਖਰੀਆਂ ਸੰਸਾਰ ਰੇਖਾਵਾਂ ਵੱਖਰੀਆਂ ਸਪੀਡਾਂ ਉੱਤੇ ਗਤੀਸ਼ੀਲ ਕਲੌਕ ਪ੍ਰਸਤੁਤ ਕਰਦੀਆਂ ਹਨ। ਔਬਜ਼ਰਵਰ ਪ੍ਰਤਿ ਰੁਕੇ ਹੋਏ (ਸਟੇਸ਼ਨਰੀ) ਕਲੌਕ ਦੀ ਸੰਸਾਰ ਰੇਖਾ ਵਰਟੀਕਲ (ਖੜਵੀਂ) ਹੁੰਦੀ ਹੈ, ਅਤੇ ਔਬਜ਼ਰਵਰ ਰਾਹੀਂ ਨਾਪਿਆ ਗਿਆ ਬੀਤਿਆ ਸਮਾਂ ਪ੍ਰੌਪਰ ਸਮੇਂ ਜਿੰਨਾ ਹੀ ਹੁੰਦਾ ਹੈ।
0.3c ਉੱਤੇ ਗਤੀਸ਼ੀਲ ਕਿਸੇ ਕਲੌਕ ਵਾਸਤੇ, ਔਬਜ਼ਰਵਰ ਰਾਹੀਂ ਨਾਪਿਆ ਜਾਣ ਵਾਲ਼ਾ ਬੀਤਿਆ ਸਮਾਂ 5.24 ਮੀਟਰ (1.75×10−8 s) ਵਿੱਚ ਮਿਲਦਾ ਹੈ, ਜਦੋਂਕਿ 0.7c ਉੱਤੇ ਗਤੀ ਕਰਦੇ ਕਿਸੇ ਕਲੌਕ ਲਈ, ਔਬਜ਼ਰਵਰ ਰਾਹੀਂ ਨਾਪਿਆ ਗਿਆ ਬੀਤਿਆ ਵਕਤ 7.00 ਮੀਟਰ (2.34×10−8 s) ਮਿਲਦਾ ਹੈ। ਇਹ ਟਾਈਮ ਡਿਲੇਸ਼ਨ ਨਾਮਕ ਵਰਤਾਰਾ ਸਮਝਾਉਂਦਾ ਹੈ। ਤੇਜ਼ ਯਾਤਰਾ ਕਰਨ ਵਾਲ਼ੇ ਕਲੌਕ ਪ੍ਰੌਪਰ ਸਮੇਂ ਦੀ ਉੱਡੀ ਹੀ ਮਾਤਰਾ ਨੂੰ ਟਿੱਕ ਕਰਨ ਵਾਸਤੇ (ਔਬਜ਼ਰਵਰ ਫ੍ਰੇਮ ਵਿੱਚ) ਜਿਆਦਾ ਲੰਬਾ ਸਮਾਂ ਲੈਂਦੇ ਹਨ, ਅਤੇ ਉਹ x–ਧੁਰੇ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਟਾਈਮ ਡਿਲੇਸ਼ਨ ਤੋਂ ਬਗੈਰ ਯਾਤਰਾ ਕੀਤੀ ਜਾਣ ਵਾਲੀ ਦੂਰੀ ਤੋਂ ਹੋਰ ਵੱਧ ਦੂਰੀ ਯਾਤਰਾ ਕਰਦੇ ਹਨ।[17]: 220–221 ਵੱਖਰੀਆਂ ਇਨ੍ਰਸ਼ੀਅਲ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ ਅੰਦਰਲੇ ਦੋ ਔਬਜ਼ਰਵਰਾਂ ਰਾਹੀਂ ਨਾਪੀ ਗਈ ਸਮਾਂ ਦੇਰੀ ਪਰਸਪ੍ਰਿਕ ਹੁੰਦੀ ਹੈ। ਜੇਕਰ ਔਬਜ਼ਰਵਰ O ਅਪਣੀ ਫ਼ਰੇਮ ਅੰਦਰ ਔਬਜ਼ਰਵਰ O’ ਦੇ ਕਲੌਕਾਂ ਨੂੰ ਧੀਮਾ ਚਲਦਾ ਨਾਪਦਾ ਹੈ, ਤਾਂ ਔਬਜ਼ਰਵਰ O’ ਅਪਣੀ ਵਾਰੀ ਵਿੱਚ ਔਬਜ਼ਰਵਰ O ਦੇ ਕਲੌਕਾਂ ਨੂੰ ਧੀਮਾ ਦੌੜਦੇ ਨਾਪੇਗਾ।
ਲੰਬਾਈ ਸੁੰਗੜਨਾ (ਲੈਂਥ ਕੰਟ੍ਰੈਕਸ਼ਨ), ਦੇਰੀ (ਡੀਲੇਸਨ) ਦੀ ਤਰਾਂ, ਤਤਕਾਲੀਨਤਾ ਦੀ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਇੱਕ ਪ੍ਰਗਟਾਅ ਹੈ। ਲੰਬਾਈ ਦਾ ਨਾਪ ਅਜਿਹੀਆਂ ਦੋ ਘਟਨਾਵਾਂ ਦਰਮਿਆਨ ਸਪੇਸਟਾਈਮ ਅਰਸੇ ਦੇ ਨਾਪ ਦੀ ਮੰਗ ਕਰਦਾ ਹੈ ਜੋ ਇੱਕ ਦੀ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਵਿੱਚ ਤਤਕਾਲੀਨ ਹੋਣ। ਪਰ ਓਹ ਘਟਨਾਵਾਂ ਜੋ ਇੱਕ ਦੀ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਵਿੱਚ ਤਤਕਾਲੀਨ ਹੁੰਦੀਆਂ ਹਨ, ਸਰਵ ਸਧਾਰਨ ਤੌਰ ਤੇ, ਰੈਫ਼੍ਰੈਂਸ ਦੀਆਂ ਹੋਰ ਫ੍ਰੇਮਾਂ ਤੋਂ ਤਤਕਾਲੀਨ ਨਹੀਂ ਹੁੰਦੀਆਂ ਹਨ।
ਚਿੱਤਰ. 2-9 ਇੱਕ 1 m ਰੌਡ ਦੀ ਗਤੀ ਸਮਝਾਉਂਦਾ ਹੈ ਜੋ 0.5 c ਉੱਤੇ x ਧੁਰੇ ਦੇ ਨਾਲ ਨਾਲ ਯਾਤਰਾ ਕਰ ਰਹੀ ਹੈ। ਨੀਲੇ ਪੱਟੇ ਦੇ ਕਿਨਾਰੇ ਰੌਡ ਦੇ ਦੋਵੇਂ ਅੰਤਲੇ-ਸਿਰਿਆਂ ਦੀਆਂ ਸੰਸਾਰ ਰੇਖਾਵਾਂ ਪ੍ਰਸਤੁਤ ਕਰਦੇ ਹਨ। ਇਨਵੇਰੀਅੰਟ ਹਾਈਪ੍ਰਬੋਲਾ 1 m ਦੇ ਕਿਸੇ ਸਪੇਸਲਾਈਕ ਅਰਸੇ ਦੁਆਰਾ ਮੂਲ ਬਿੰਦੂ ਤੋਂ ਵੱਖਰੀਆਂ ਹੋਈਆਂ ਘਟਨਾਵਾਂ ਸਮਝਾਉਂਦਾ ਹੈ। ਸਿਰੇ O ਅਤੇ B ਜਦੋਂ ' = 0 ਤੋਂ ਨਾਪੇ ਜਾਂਦੇ ਹਨ, ਫ੍ਰੇਮ S’ ਵਿੱਚ ਤਤਕਾਲੀਨ ਘਟਨਾਵਾਂ ਹਨ। ਪਰ ਫ੍ਰੇਮ S ਅੰਦਰਲੇ ਕਿਸੇ ਔਬਜ਼ਰਵਰ ਲਈ, ਘਟਨਾਵਾਂ O ਅਤੇ B ਤਤਕਾਲੀਨ ਨਹੀਂ ਹਨ। ਲੰਬਾਈ ਨਾਪਣ ਵਾਸਤੇ, ਫ੍ਰੇਮ S ਦਾ ਔਬਜ਼ਰਵਰ ਰੌਡ ਦੇ ਸਿਰਿਆਂ ਨੂੰ x-ਧੁਰੇ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਅਪਣੀਆੰ ਸੰਸਾਰ ਰੇਖਾਵਾਂ ਉੱਤੇ ਸੁੱਟੇ ਗਏ ਤੌਰ ਤੇ ਨਾਪਦਾ ਹੈ। ਰੌਡ ਦੀ ਵਰਲਡ-ਸ਼ੀਟ ਦੀ x-ਧੁਰੇ ਉੱਤੇ ਪ੍ਰੋਜੈਕਸ਼ਨ ਅੱਗਲੇ ਪਾਸੇ ਤੋਂ ਘਟੀ ਹੋਈ ਲੰਬਾਈ OC ਪੈਦਾ ਕਰਦੀ ਹੈ।[7]: 125
(ਨਾ ਦਿਖਾਈ ਗਈ) A ਰਾਹੀਂ ਇੱਕ ਖੜਵੀਂ (ਵਰਟੀਕਲ) ਰੇਖਾ ਡਰਾਈਂਗ ਜੋ x-ਧੁਰੇ ਨੂੰ ਕੱਟੇ ਸਾਬਤ ਕਰਦੀ ਹੈ ਕਿ, ਭਾਵੇਂ OB ਦੀ ਤਰਾਂ, ਔਬਜ਼ਰਵਰ O ਦੇ ਨ਼ਜ਼ਰੀਏ ਤੋਂ ਅੱਗੇ ਤੋਂ ਘਟ ਜਾਂਦੀ ਹੈ, ਇਸੇਤਰਾਂ OA ਵੀ ਔਬਜ਼ਰਵਰ O’ ਦੇ ਨਜ਼ਰੀਏ ਤੋਂ ਅੱਗੇ ਤੋਂ ਘਟ ਜਾਂਦੀ ਹੈ। ਜਿਵੇਂ ਹਰੇਕ ਔਬਜ਼ਰਵਰ ਹੋਰਾੰ ਦੇ ਕਲੌਕ ਨੂੰ ਧੀਮਾ ਚਲਦਾ ਨਾਪਦਾ ਹੈ, ਉਵੇਂ ਹੀ ਹਰੇਕ ਔਬਜ਼ਰਵਰ ਹੋਰਾਂ ਦੇ ਪੈਮਾਨਿਆਂ ਨੂੰ ਸੁੰਗੜੇ ਹੋਏ ਨਾਪਦਾ ਹੈ।
ਪਰਸਪਰ ਸਮਾਂ ਦੇਰੀ ਅਤੇ ਟਵਿਨ ਪਹੇਲੀ
[ਸੋਧੋ]
ਪਰਸਪਰ ਸਮਾਂ ਦੇਰੀ
[ਸੋਧੋ]ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ
ਪਰਸਪਰ ਸਮਾਂ ਦੇਰੀ ਅਤੇ ਲੰਬਾਈ ਸੁੰਗੜਨਾ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੇ ਸ਼ੁਰੂਆਤੀ ਜਿਗਿਆਸੂਆਂ ਨੂੰ ਸਵੈ-ਵਿਰੋਧੀ-ਧਾਰਨਾਵਾਂ ਦੇ ਤੌਰ ਤੇ ਲਗਦੇ ਅਨੁਭਵ ਹੁੰਦੇ ਹਨ। ਚਿੰਤਾ ਇਹ ਹੁੰਦੀ ਹੈ ਕਿ ਜੇਕਰ ਔਬਜ਼ਰਵਰ A, ਔਬਜ਼ਰਵਰ B ਦੇ ਕਲੌਕਾਂ ਨੂੰ ਧੀਮਾ ਦੌੜਦਾ ਨਾਪਦਾ ਹੈ, ਤਾਂ ਸਰਲ ਤੌਰ ਤੇ ਇਸਦਾ ਕਾਰਣ A ਦੇ ਸਾਪੇਖਿਕ ਸਪੀਡ v ਉੱਤੇ B ਦਾ ਗਤੀ ਕਰਨਾ ਹੁੰਦਾ ਹੈ, ਫੇਰ ਰਿਲਟੀਵਿਟੀ ਦਾ ਸਿਧਾਂਤ ਮੰਗ ਕਰਦਾ ਹੈ ਕਿ ਔਬਜ਼ਰਵਰ B ਵੀ ਇਸੇਤਰਾਂ A ਦੇ ਕਲੌਕਾਂ ਨੂੰ ਧੀਮਾ ਚਲਦਾ ਨਾਪੇ। ਇਹ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਸਵਾਲ ਹੈ ਜੋ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਪ੍ਰਤਿ ਸਮਝ ਦੇ ਧੁਰ ਤੱਕ ਜਾਂਦਾ ਹੈ।"[17]: 198
ਬੁਨਿਆਦੀ ਤੌਰ ਤੇ, A ਅਤੇ B ਦੋ ਵੱਖਰੇ ਨਾਪ ਲੈ ਰਹੇ ਹੁੰਦੇ ਹਨ।
B ਦੇ ਕਲੌਕਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਇੱਕ ਕਲੌਕ ਦੀ ਹੋ ਰਹੀ ਟਿੱਕ-ਟਿੱਕ ਦੀ ਦਰ ਨੂੰ ਨਾਪਣ ਦੇ ਚੱਕਰ ਵਿੱਚ, A ਨੂੰ ਜਰੂਰ ਹੀ ਅਪਣੇ ਦੋ ਕਲੌਕ ਵਰਤਣੇ ਚਾਹੀਦੇ ਹਨ, ਪਹਿਲਾ ਓਹ ਸਮਾਂ ਦਰਜ ਕਰੇਗਾ ਜਿੱਥੇ B ਦਾ ਕਲੌਕ ”B ਦੀ ਪਹਿਲੀ ਲੋਕੇਸ਼ਨ ਨੂੰ” ਪਹਿਲੀ ਵਾਰ ਟਿੱਕ ਕਰਦਾ ਹੈ, ਅਤੇ ਦੂਜਾ ਕਲੌਕ, ਓਹ ਸਮਾਂ ਰਿਕਾਰਡ ਕਰੇਗਾ ਜਿੱਥੇ B ਦਾ ਕਲੌਕ ”B ਦੀ ਅਗਲੀ ਲੋਕੇਸ਼ਨ ਉੱਤੇ” ਇਸਦੀ ਦੂਜੀ ਟਿੱਕ ਕੱਢਦਾ ਹੈ। ਔਬਜ਼ਰਵਰ A ਨੂੰ ਦੋ ਕਲੌਕਾਂ ਦੀ ਜਰੂਰਤ ਪੈਂਦੀ ਹੈ ਕਿਉਂਕਿ B ਗਤੀ ਕਰ ਰਿਹਾ ਹੁੰਦਾ ਹੈ, ਇਸ ਲਈ ਗਿਣਤੀ ਦੇ ਕੁੱਲ ਤਿੰਨ ਕਲੌਕਾਂ ਨੂੰ ਨਾਪ ਵਿੱਚ ਸਾਮਿਲ ਕਰਨਾ ਪੈਂਦਾ ਹੈ। A ਦੇ ਦੋਵੇਂ ਕਲੌਕ A ਦੀ ਫ੍ਰੇਮ ਅੰਦਰ ਸਿੰਕ੍ਰੋਨਾਇਜ਼ ਕੀਤੇ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ। ਇਸਦੇ ਉਲਟ, B ਦੇ ਦੋਵੇਂ ਕਲੌਕ ਉਸਦੀ ਫ੍ਰੇਮ ਵਿੱਚ A ਦੇ ਕਲੌਕਾਂ ਦੀ ਓੱਥੇ ਟਿੱਕ ਕਰਨ ਦੀ ਲੋਕੇਸ਼ਨ ਦਰਜ ਕਰਨ ਵਾਲੀ ਜਗਹ ਸਿੰਕ੍ਰੋਨਾਈਜ਼ ਕੀਤੇ ਹੋਣੇ ਮੰਗਦੇ ਹਨ ਜਿੱਥੇ A ਦੇ ਕਲੌਕ ਅਪਣੇ ਟਿੱਕ ਕੱਢਦੇ ਹਨ। ਇਸਤਰਾਂ, A ਅਤੇ B ਹਰੇਕ ਹੀ ਤਿੰਨ ਕਲੌਕਾਂ ਦੇ ਵੱਖਰੇ ਸੈੱਟਾਂ ਨਾਲ ਅਪਣੇ ਅਪਣੇ ਨਾਪ ਲੈ ਰਹੇ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ ਇਹ ਇੱਕੋ ਜਿਹੇ ਕਲੌਕਾਂ ਨਾਲ ਇੱਕੋ ਜਿਹਾ ਨਾਪ ਨਹੀਂ ਲੈ ਰਹੇ ਹੁੰਦੇ, ਇਸਲਈ ਅਜਿਹੀ ਕੋਈ ਜਨਮਜਾਤ ਜਰੂਰਤ ਨਹੀਂ ਹੁੰਦੀ ਕਿ ਲਏ ਗਏ ਨਾਪ ਇਸਤਰਾਂ ਉਲਟੇ ਤੌਰ ਤੇ ”ਅਨੁਕੂਲ” ਹੋਣਗੇ ਕਿ, ਜੇਕਰ ਇੱਕ ਔਬਜ਼ਰਵਰ ਦੂਜੇ ਦੇ ਕਲੌਕ ਨੂੰ ਧੀਮਾ ਦੌੜਦਾ ਨਾਪੇ, ਤਾਂ ਦੂਜਾ ਔਬਜ਼ਰਵਰ ਪਹਿਲੇ ਔਬਜ਼ਰਵਰ ਦੇ ਕਲੌਕ ਨੂੰ ਤੇਜ਼ ਚਲਦਾ ਹੀ ਨਾਪੇਗਾ।[17]: 198–199
ਪਰਸਪਰ ਲੰਬਾਈ ਸੁੰਗੜਨ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ, ਚਿੱਤਰ. 2‑9 ਸਮਝਾਉਂਦਾ ਹੈ ਕਿ ਪ੍ਰਾਈਮ ਕੀਤੀਆਂ ਹੋਈਆਂ ਅਤੇ ਗੈਰ-ਪ੍ਰਾਈਮ (ਪ੍ਰਾਈਮ ਨਾ) ਕੀਤੀਆਂ ਹੋਈਆਂ ਫ੍ਰੇਮਾਂ, ਕਿਸੇ ਹਾਈਪ੍ਰਬੋਲਿਕ ਐਂਗਲ ਦੁਆਰਾ ਪਰਸਪਰ ਘੁਮਾਈਆਂ ਹੋਇਆਂ ਹੁੰਦੀਆਂ ਹਨ (ਜੋ ਯੁਕਿਲਡਨ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਅੰਦਰ ਸਧਾਰਨ ਕੋਣਾਂ ਦੇ ਤੁੱਲ ਹੈ)।[note 6] ਇਸ ਰੋਟੇਸ਼ਨ ਕਾਰਨ, ਕਿਸੇ ਪ੍ਰਾਈਮ ਕੀਤੀ ਮੀਟਰ-ਸਟਿੱਕ ਦੀ, ਪ੍ਰਾਈਮ ਨਾ ਕੀਤੇ x-ਦੁਰੇ ਉੱਤੇ ਪ੍ਰੋਜੈਕਸ਼ਨ, ਅੱਗੇ ਤੋਂ ਘਟ ਜਾਂਦੀ ਹੈ, ਜਦੋਂਕਿ ਇਸੇ ਤਰਾਂ, ਕਿਸੇ ਪ੍ਰਾਈਮ-ਨਾ-ਕੀਤੀ ਮੀਟਰ-ਸਟਿੱਕ ਦੀ, ਪ੍ਰਾਈਮ ਕੀਤੇ x’-ਧੁਰੇ ਉੱਤੇ ਸੁੱਟੀ ਗਈ ਪ੍ਰੋਜੈਕਸ਼ਨ ਵੀ ਅਗਲੇ ਪਾਸਿਓਂ ਘਟ ਜਾਂਦੀ ਹੈ।
ਚਿੱਤਰ. 2-10 ਪਰਸਪਰ ਸਮਾਂ ਦੇਰੀ ਬਾਬਤ ਪਿਛਲੀ ਚਰਚਾ ਤੇ ਜੋਰ ਦਿੰਦਾ ਹੈ। ਇਸ ਚਿੱਤਰ ਵਿੱਚ, ਘਟਨਾਵਾਂ A ਅਤੇ C, ਘਟਨਾ O ਤੋਂ ਇੱਕ ਸਮਾਨ ਟਾਈਮਲਾਈਕ ਅਰਸਿਆਂ ਦੁਆਰਾ ਵੱਖਰੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਪ੍ਰਾਈਮ-ਨਾ-ਕੀਤੀ ਗਈ ਫ੍ਰੇਮ ਤੋਂ, ਘਟਨਾਵਾਂ A ਅਤੇ B ਤਤਕਾਲੀਨ ਹੋਣ ਦੀ ਤਰਾਂ ਨਾਪੀਆਂ ਜਾਂਦੀਆਂ ਹਨ, ਪਰ ਪ੍ਰਾਈਮ ਕੀਤੇ ਗਏ ਔਬਜ਼ਰਵਰ ਨਾਲ਼ੋਂ ਪ੍ਰਾਈਮ-ਨਾ-ਕੀਤੇ-ਗਏ-ਔਬਜ਼ਰਵਰ ਲਈ ਜਿਆਦਾ ਵਕਤ ਬੀਤਿਆ ਹੁੰਦਾ ਹੈ। ਪ੍ਰਾਈਮ ਕੀਤੀ ਗਈ ਫ੍ਰੇਮ ਤੋਂ, ਘਟਨਾਵਾਂ C ਅਤੇ D ਨੂੰ ਤਤਕਾਲੀਨ ਦੀ ਤਰਾਂ ਹੁੰਦੀਆਂ ਨਾਪਿਆ ਜਾਂਦਾ ਹੈ, ਪਰ ਪ੍ਰਾਈਮ ਨਾ ਕੀਤੇ ਗਏ ਔਬਜ਼ਰਵਰ ਨਾਲ਼ੋਂ ਪ੍ਰਾਈਮ-ਕੀਤੇ-ਗਏ-ਔਬਜ਼ਰਵਰ ਲਈ ਜਿਆਦਾ ਵਕਤ ਬੀਤਿਆ ਹੁੰਦਾ ਹੈ। ਹਰੇਕ ਔਬਜ਼ਰਵਰ ਨੇ ਦੂਜੇ ਔਬਜ਼ਰਵਰ ਦੇ ਕਲੌਕਾਂ ਨੂੰ ਧੀਮਾ ਚਲਦਾ ਨਾਪਿਆ ਹੁੰਦਾ ਹੈ।[7]: 124
ਕਿਰਪਾ ਕਰਕੇ ਸ਼ਬਦ ਨਾਪ ਦੀ ਮਹੱਤਵਪੂਰਨਤਾ ਵੱਲ ਧਿਆਨ ਦਿਓ। ਕਿਸੇ ਔਬਜ਼ਰਵਰ ਦੀ ਗਤੀ ਦੀ ਅਵਸਥਾ ਕਿਸੇ ਔਬਜ਼ਰਵ ਕੀਤੀ ਗਈ ਚੀਜ਼ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਨਹੀਂ ਕਰ ਸਕਦੀ, ਪਰ ਇਹ ਚੀਜ਼ ਪ੍ਰਤਿ ਔਬਜ਼ਰਵਰ ਦੀਆਂ ਔਬਜ਼ਰਵੇਸ਼ਨਾਂ (ਨਿਰੀਖਣਾਂ) ਉੱਤੇ ਅਸਰ ਪਾ ਸਕਦੀ ਹੈ।
ਚਿੱਤਰ. 2-10 ਵਿੱਚ, x-ਧੁਰੇ ਦੇ ਸਮਾਂਤਰ ਵਾਹੀ ਗਈ ਹਰੇਕ ਰੇਖਾ ਪ੍ਰਾਈਮ-ਨਾ-ਕੀਤੇ ਗਏ ਔਬਜ਼ਰਵਰ ਵਾਸਤੇ ਤਤਕਾਲੀਨਤਾ ਦੀ ਇੱਕ ਰੇਖਾ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਦੀ ਹੈ। ਓਸ ਰੇਖਾ ਉੱਤੇ ਸਾਰੀਆਂ ਘਟਨਾਵਾਂ ਦੀ ct ਦਾ ਮੁੱਲ ਇੱਕੋ ਜਿਹਾ ਰਹਿੰਦਾ ਹੈ। ਇਸੇਤਰਾਂ, ' ਧੁਰੇ ਪ੍ਰਤਿ ਸਮਾਂਤਰ ਵਾਹੀ ਗਈ ਰੇਖਾ ਪ੍ਰਾਈਮ ਕੀਤੇ ਗਏ ਔਬਜ਼ਰਵਰ ਲਈ ਤਤਕਾਲੀਨਤਾ ਦੀ ਇੱਕ ਰੇਖਾ ਪ੍ਰਸਤੁਤ ਕਰਦੀ ਹੈ। ਓਸ ਰੇਖਾ ਉੱਤੇ ਦੀਆਂ ਸਾਰੀਆਂ ਘਟਨਾਵਾਂ ' ਦਾ ਇੱਕੋ ਜਿਹਾ ਸਮਾਂ-ਮੁੱਲ ਰੱਖਦੀਆਂ ਹਨ।
ਟਵਿਨ ਪੈਰਾਡੌਕਸ
[ਸੋਧੋ]ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ
ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਪ੍ਰਤਿ ਮੁਢਲੀ ਜਾਣ-ਪਛਾਣ ਅਕਸਰ ਗੈਲੀਲੀਅਨ ਰਿਲੇਟੀਵਿਟੀ ਅਤੇ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦਰਮਿਆਨ ਫਰਕ ਨੂੰ ਕਲਪਿਤ ਕੀਤੇ ਪੈਰਾਡੌਕਸਾਂ ਦੀ ਇੱਕ ਲੜੀ ਪ੍ਰਦ੍ਰਸ਼ਿਤ ਕਰਨ ਰਾਹੀਂ ਸਮਝਾਉਂਦੀ ਹੈ। ਸਾਰੀਆਂ ਪਹੇਲੀਆਂ, ਦਰਅਸਲ, ਵਾਸਤਵਿਕ ਤੌਰ ਤੇ, ਕੇਵਲ ਗਲਤ-ਪ੍ਰਦ੍ਰਸ਼ਿਤ ਜਾਂ ਗਲਤ-ਸਮਝੀਆਂ ਗਈਆਂ ਸਮੱਸਿਆਵਾਂ ਹਨ, ਜੋ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਦੇ ਤੁਲਨਾਯੋਗ ਵਿਲੌਸਿਟੀਆਂ ਪ੍ਰਤਿ ਸਾਡੀ ਅਗਿਆਨਤਾ ਦਾ ਨਤੀਜਾ ਹਨ। ਇਲਾਜ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ ਬਹੁਤ ਸਾਰੀਆਂ ਸਮੱਸਿਆਵਾਂ ਨੂੰ ਹੱਲ ਕਰਨ ਵਿੱਚ ਹੈ ਅਤੇ ਇਸਦੀਆਂ ਸਮਝ-ਵਿਰੋਧੀ ਭਵਿੱਖਬਾਣੀਆਂ ਕਹੇ ਜਾਣ ਵਾਲੇ ਅਨੁਮਾਨਾਂ ਤੋਂ ਜਾਣੂ ਹੋਣਾ ਹੈ। ਸਪੇਸਟਾਈਮ ਦੇ ਅਧਿਐਨ ਪ੍ਰਤਿ ਰੇਖਾਗਣਿਤ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਨੂੰ ਇੱਕ ਅਜੋਕੀ ਸਹਿਜ-ਸਮਝ ਵਿਕਸਿਤ ਕਰਨ ਦਾ ਸਭ ਤੋਂ ਚੰਗਾ ਤਰੀਕਾ ਮੰਨਿਆ ਗਿਆ ਹੈ।[28]
ਟਵਿਨ ਪੈਰਾਡੌਕਸ ਇੱਕੋ ਜਿਹੇ ਜੁੜਵਾਂ ਭਰਾਵਾਂ (ਟਵਿਨਾਂ) ਵਾਲਾ ਇੱਕ ਸੋਚ ਪ੍ਰਯੋਗ ਹੈ, ਜਿਹਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਕਿਸੇ ਉੱਚ-ਸਪੀਡ ਰੌਕਟ ਵਿੱਚ ਬੈਠ ਕੇ ਸਪੇਸ ਵਿੱਚ ਇੱਕ ਯਾਤਰਾ ਕਰਦਾ ਹੈ, ਘਰ ਵਾਪਸ ਪਰਤਣ ਤੇ ਖੋਜਦਾ ਹੈ ਕਿ ਧਰਤੀ ਤੇ ਰਹਿਣ ਵਾਲਾ ਉਸਦਾ ਜੁੜਵਾਂ ਭਰਾ ਉਸਤੋਂ (ਉਮਰ ਵਿੱਚ) ਜਿਆਦਾ ਉਮਰ ਵਾਲਾ ਹੋ ਗਿਆ ਹੈ। ਇਹ ਨਤੀਜਾ ਬੁਝਾਰਤ ਭਰਿਆ ਦਿਸਦਾ ਹੈ ਕਿਉਂਕਿ ਹਰੇਕ ਟਵਿਨ ਦੂਜੇ ਟਵਿਨ ਨੂੰ ਗਤੀਸ਼ੀਲ ਹੁੰਦਾ ਨਿਰੀਖਣ ਕਰਦਾ ਹੈ, ਅਤੇ ਇਸ ਕਰਕੇ ਪਹਿਲੀ ਨਜ਼ਰ ਵਿੱਚ, ਇਹ ਦਿਸੇਗਾ, ਕਿ ਹਰੇਕ ਨੂੰ ਦੂਜਾ ਜਣਾ ਜਿਆਦਾ ਉਮਰ ਵਾਲਾ ਹੋ ਗਿਆ ਪਾਉਣਾ ਚਾਹੀਦਾ ਹੈ। ਟਵਿਨ ਪੈਰਾਡੌਕਸ ਕਿਸੇ ਤੀਜੇ ਕਲੌਕ ਦੀ ਜਰੂਰਤ ਨੂੰ ਮੁਕਾ ਕੇ ਉੱਪਰ ਦਰਸਾਈ ਪਰਸਪਰ ਟਾਈਮ ਦੇਰੀ (ਡੀਲੇਸ਼ਨ) ਵਾਸਤੇ ਪੁਸ਼ਟੀਕਰਨ ਨੂੰ ਸਾਈਡ ਤੇ ਕਰ ਦਿੰਦਾ ਹੈ।[17]: 207 ਹੋਰ ਤਾਂ ਹੋਰ, ਟਵਿਨ ਪੈਰਾਡੌਕਸ ਕੋਈ ਸ਼ੁੱਧ ਪਹੇਲੀ ਨਹੀਂ ਹੈ ਕਿਉਂਕਿ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਸੰਦ੍ਰਭ ਅੰਦਰ ਇਹ ਅਸਾਨੀ ਨਾਲ ਸਮਝ ਆ ਜਾਂਦਾ ਹੈ।
ਅਸਰ ਕਿ ਕੋਈ ਪਹੇਲੀ ਮੌਜੂਦ ਹੈ, ਇਸ ਗਲਤਫਹਿਮੀ ਤੋਂ ਮਜ਼ਬੂਤ ਬਣੀ ਰਹਿੰਦਾ ਹੈ ਕਿ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਕੀ ਬਿਆਨ ਕਰਦੀ ਹੈ। ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਸਾਰੀਆਂ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ ਨੂੰ ਇੱਕ ਸਮਾਨ ਘੋਸ਼ਿਤ ਨਹੀਂ ਕਰਦੀ, ਸਿਰਫ ਇਨ੍ਰਸ਼ੀਅਲ ਫ੍ਰੇਮਾਂ ਨੂੰ ਕਰਦੀ ਹੈ। ਗਤੀਸ਼ੀਲ ਟਵਿਨ ਦੀ ਫ੍ਰੇਮ ਐਕਸਲ੍ਰੇਟਿੰਗ ਅੰਤ੍ਰਾਲਾਂ ਦੌਰਾਨ ਇਨ੍ਰਸ਼ੀਅਲ ਨਹੀਂ ਹੁੰਦੀ। ਹੋਰ ਤਾਂ ਹੋਰ, ਟਵਿਨਾਂ ਦਰਮਿਆਨ ਫਰਕ ਨਿਰੀਖਣਾਤਮਿਕ ਤੌਰ ਤੇ ਪਛਾਣਯੋਗ ਹੁੰਦਾ ਹੈ: ਗਤੀਸ਼ੀਲ ਟਵਿਨ ਨੂੰ ਘਰ ਵਾਪਿਸ ਪਰਤਣਯੋਗ ਹੋਣ ਵਾਸਤੇ ਅਪਣੇ ਰੌਕਟ ਨੂੰ ਅੱਗ ਲਗਾਉਣ ਦੀ ਜਰੂਰਤ ਪੈਂਦੀ ਹੈ, ਜਦੋਂਕਿ ਘਰ-ਰੁਕੇ ਰਹਿਣ ਵਾਲੇ ਟਵਿਨ ਨੂੰ ਅਜਿਹਾ ਨਹੀਂ ਕਰਨਾ ਪੈਂਦਾ।[29]
ਇਸਤੋਂ ਪਹਿਲਾਂ ਕਿ ਅਸੀਂ ਇਹ ਸਮਝ ਸਕੀਏ ਕਿ ਕਿਉਂ ਇਹ ਫਰਕ ਟਵਿਨਾਂ ਦੀਆਂ ਉਮਰਾਂ ਵਿੱਚ ਇੱਕ ਫਰਕ ਪਾਉਂਦੇ ਹਨ, ਗਹਿਰੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੀ ਜਰੂਰਤ ਪੈਂਦੀ ਹੈ। ਚਿੱਤਰ. 2‑11 ਦੇ ਸਪੇਸਟਾਈਮ ਡਾਇਗ੍ਰਾਮ ਤੇ ਵਿਚਾਰ ਕਰੋ। ਇਹ x-ਧੁਰੇ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਸਿੱਧੇ ਜਾ ਰਹੇ, ਅਤੇ ਤੁਰੰਤ ਹੀ ਪਿੱਛੇ ਮੁੜ ਰਹੇ ਇੱਕ ਟਵਿਨ ਦਾ ਇੱਕ ਸਰਲ ਮਾਮਲਾ ਪ੍ਰਸਤੁਤ ਕਰਦਾ ਹੈ। ਘਰ-ਠਹਿਰੇ ਟਵਿਨ ਦੇ ਖੜਨ ਦੇ ਬਿੰਦੂ ਤੋਂ, ਟਵਿਨ ਪਹੇਲੀ ਬਾਬਤ ਬਿਲਕੁਲ ਕੁੱਝ ਵੀ ਬੁਝਾਰਤ ਭਰਿਆ ਨਹੀਂ ਹੈ। O ਤੋਂ C ਤੱਕ ਦੀ ਟਵਿਨ ਦੀ ਸੰਸਾਰ ਰੇਖਾ ਯਾਤਰਾ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਨਾਪੇ ਗਏ ਪ੍ਰੌਪਰ ਟਾਈਮ, ਅਤੇ C ਤੋਂ B ਤੱਕ ਨਾਪੇ ਗਏ ਪ੍ਰੌਪਰ ਟਾਈਮ ਦਾ ਜੋੜ ਕੇ O ਤੋਂ A ਤੋਂ B ਤੱਕ ਦੇ ਨਾਪੇ ਗਏ ਘਰ-ਠਹਿਰੇ ਟਵਿਨ ਵਾਲੇ ਪ੍ਰੌਪਰ ਟਾਈਮ ਤੋਂ ਘੱਟ ਰਹਿੰਦਾ ਹੈ। ਗਤੀਸ਼ੀਲ ਟਵਿਨ ਦੁਆਰਾ ਮਹਿਸੂਸ ਕੀਤੇ ਗਏ ਪ੍ਰੌਪਰ ਟਾਈਮ ਦੀ ਕੁੱਲ ਮਾਤਰਾ ਦਾ ਹਿਸਾਬ ਲਗਾਉਣ ਵਾਸਤੇ ਕਰਵ (ਵਕਰ) ਦੇ ਨਾਲ ਨਾਲ ਸਬੰਧਤ ਘਟਨਾਵਾਂ ਦਰਮਿਆਨ ਪ੍ਰੌਪਰ ਟਾਈਮ ਨੂੰ ਜੋੜਨ ਲਈ ਹੋਰ ਜਿਆਦਾ ਗੁੰਝਲਦਾਰ ਵਕਰਿਤ ਰਸਤਿਆਂ (ਕੰਪਲੈਕਸ ਟ੍ਰੈਜੈਕਟ੍ਰੀਆਂ) ਯਾਨਿ ਕਿ, ਪਾਥ ਇੰਟਗ੍ਰਲ ਦੀ ਜਰੂਰਤ ਪੈਂਦੀ ਹੈ।[29]
ਗੁੰਝਲਦਾਰਤਾਵਾਂ ਪੈਦਾ ਹੋ ਜਾਂਦੀਆਂ ਹਨ ਜੇਕਰ ਟਵਿਨ ਪੈਰਾਡੌਕਸ ਨੂੰ ਗਤੀਸ਼ੀਲ ਟਵਿਨ ਦੇ ਨਜ਼ਰੀਏ ਤੋਂ ਵਿਸ਼ਲੇਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
ਇਸ ਚਰਚਾ ਦੇ ਬਾਕੀ ਹਿੱਸੇ ਲਈ, ਅਸੀਂ ਵੇਇੱਸ ਦਾ ਨਾਮਕਰਨ ਤਰੀਕਾ ਅਪਣਾਉਂਦੇ ਹਾਂ, ਜੋ ਘਰ-ਠਹਿਰਨ ਵਾਲੇ ਟਵਿਨ ਨੂੰ ਟੇਰੈਂਸ ਦਾ ਨਾਮ ਦਿੰਦਾ ਹੈ ਅਤੇ ਯਾਤਰਾ ਕਰਨ ਵਾਲੇ ਟਵਿਨ ਨੂੰ ਸਟੈੱਲਾ ਦਾ ਨਾਮ ਦਿੰਦਾ ਹੈ।[29]
ਅਸੀਂ ਪਹਿਲਾਂ ਨੋਟ ਕੀਤਾ ਸੀ ਕਿ ਸਟੈੱਲਾ ਕਿਸੇ ਇਨ੍ਰਸ਼ੀਅਲ ਫ੍ਰੇਮ ਅੰਦਰ ਨਹੀਂ ਹੁੰਦੀ। ਇਹ ਤੱਥ ਦਿੱਤਾ ਹੋਣ ਤੇ, ਕਦੇ ਕਦੇ ਇਹ ਕਿਹਾ ਗਿਆ ਸੀ ਕਿ ਟਵਿਨ ਪੈਰਾਡੌਕਸ ਦਾ ਸੰਪੂਰਣ ਹੱਲ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਮੰਗ ਕਰਦਾ ਹੈ। ਇਹ ਸੱਚ ਨਹੀਂ ਹੈ।[29]
ਇੱਕ ਸ਼ੁੱਧ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿਸ਼ਲੇਸ਼ਣ ਇਸਤਰਾਂ ਹੋ ਸਕਦਾ ਹੈ: ਸਟੈੱਲਾ ਦੀ ਰੈਸਟ ਫ੍ਰੇਮ ਵਿੱਚ, ਉਹ ਸਾਰੇ ਦੇ ਸਾਰੇ ਟ੍ਰਿੱਪ ਲਈ ਗਤੀਹੀਣ ਰਹਿੰਦੀ ਹੈ। ਜਦੋਂ ਉਹ ਮੁੜਨ ਵਾਸਤੇ ਅਪਣੇ ਰਾਕਟ ਨੂੰ ਅੱਗ ਲਗਾਉਂਦੀ ਹੈ, ਤਾਂ ਉਹ ਇੱਕ ਸੂਡੋਫੋਰਸ ਅਨੁਭਵ ਕਰਦੀ ਹੈ ਜੋ ਕਿਸੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੋਰਸ ਨਾਕਲ ਮਿਲਦਾ ਜੁਲਦਾ ਹੁੰਦਾ ਹੈ।[29] Figs. 2‑6 ਅਤੇ 2‑11 ਤਤਕਾਲੀਨਤਾ ਦੀਆਂ ਲਾਈਨਾਂ (ਸਤਹਿਾਂ) ਦੀ ਧਾਰਨਾ ਨੂੰ ਸਮਝਾਉਂਦੇ ਹਨ। ਔਬਜ਼ਰਵਰ ਦੇ x-ਧੁਰੇ (xy-ਪਲੇਨ) ਪ੍ਰਤਿ ਸਮਾਂਤਰ ਰੇਖਾਵਾਂ ਉਹਨਾਂ ਘਟਨਾਵਾਂ ਦੇ ਸੈੱਟ ਪ੍ਰਸਤੁਤ ਕਰਦੀਆਂ ਹਨ ਜੋ ਔਬਜ਼ਰਵਰ ਦੀ ਫ੍ਰੇਮ ਵਿੱਚ ਤਤਕਾਲੀਨ ਹੁੰਦੀਆਂ ਹਨ। ਚਿੱਤਰ. 2‑11 ਵਿੱਚ, ਨੀਲੀਆਂ ਰੇਖਾਵਾਂ ਟੇਰੈਂਸ ਦੀ ਸੰਸਾਰ ਰੇਖਾ ਉੱਤੇ ਘਟਨਾਵਾਂ ਨੂੰ ਜੋੜਦੀਆਂ ਹਨ ਜੋ, ਸਟੈੱਲਾ ਦੇ ਨਜ਼ਰੀਏ ਤੋਂ, ਉਸਦੀ ਸੰਸਾਰ ਰੇਖਾ ਉੱਤੇ ਘਟਨਾਵਾਂ ਨਾਲ ਤਤਕਾਲੀਨ ਹੁੰਦੀਆਂ ਹਨ। (ਟੇਰੈਂਸ, ਬਦਲੇ ਵਿੱਚ, ਤਤਕਾਲੀਨਤਾ ਦੀਆਂ ਲੇਟਵੀਆਂ (ਹੌਰੀਜ਼ੌਂਟਲ) ਰੇਖਾਵਾਂ ਦੇ ਇੱਕ ਸੈੱਟ ਨੂੰ ਦੇਖੇਗਾ)। ਸਟੈੱਲਾ ਦੀ ਯਾਤਰਾ ਦੇ ਬਾਹਰੀਹੱਦ ਅਤੇ ਅੰਦਰਲੀ ਹੱਦ ਦੇ ਸਾਰੇ ਰਸਤੇ, ਉਹ ਅਪਣੇ ਕਲੌਕ ਨਾਲ਼ੋਂ ਟੇਰੈਂਸ ਦੇ ਕਲੌਕਾਂ ਨੂੰ ਧੀਮਾ ਚਲਦਾ ਨਾਪਦੀ ਹੈ। ਪਰ ਵਾਪਸ ਮੁੜਨ ਸਮੇਂ (ਯਾਨਿ ਕਿ, ਚਿੱਤਰ ਅੰਦਰਲੀਆਂ ਮੋਟੀਆਂ ਨੀਲੀਆਂ ਰੇਖਾਵਾਂ ਦਰਮਿਆਨ), ਤਤਕਾਲੀਨਤਾ ਦੀਆਂ ਉਸਦੀਆਂ ਰੇਖਾਵਾਂ ਦੇ ਐਂਗਲ ਵਿੱਚ ਇੱਕ ਖਿਸਕਾਅ ਪੈਦਾ ਹੋ ਜਾਂਦਾ ਹੈ, ਜੋ ਟੇਰੈਂਸ ਦੇੀ ਸੰਸਾਰ ਰੇਖਾ ਅੰਦਰਲੀਆਂ ਘਟਨਾਵਾਂ ਦੀ ਇੱਕ ਤੇਜ਼ ਸਕਿਪ-ਓਵਰ ਨਾਲ ਜੁੜੀ ਹੁੰਦੀ ਹੈ ਜੋ ਸਟੈੱਲਾ ਦੇ ਮੁਤਾਬਿਕ ਉਸਦੀ ਅਪਣੀ ਸੰਸਾਰ ਰੇਖਾ ਨਾਲ ਤਤਕਾਲੀਨ ਹੁੰਦੀ ਹੈ। ਇਸਲਈ, ਉਸਦੇ ਟ੍ਰਿਪ ਦੇ ਅੰਤ ਉੱਤੇ, ਸਟੈੱਲਾ ਖੋਜਦੀ ਹੈ ਕਿ ਟੇਰੈਂਸ ਉਸ ਨਾਲ਼ੋਂ ਜਿਆਦਾ ਉਮਰ ਵਾਲਾ ਹੋ ਗਿਆ ਹੈ। [29]
ਭਾਵੇਂ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਲੋੜ ਟਵਿਨ ਪੈਰਾਡੌਕਸ ਦੇ ਵਿਸ਼ਲੇਸ਼ਣ ਵਾਸਤੇ ਨਹੀਂ ਪੈਂਦੀ, ਫੇਰ ਵੀ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਸਮਾਨਤਾ ਸਿਧਾਂਤ ਵਿਸ਼ੇ ਪ੍ਰਤਿ ਕੁੱਝ ਵਾਧੂ ਗਹਿਰੀ-ਸਮਝ ਮੁਹੱਈਆ ਕਰਵਾਉਂਦਾ ਹੈ। ਅਸੀਂ ਪਹਿਲਾਂ ਹੀ ਨੋਟ ਕੀਤਾ ਸੀ ਕਿ ਸਟੈੱਲਾ ਕਿਸੇ ਇਨ੍ਰਸ਼ੀਅਲ ਫ੍ਰੇਮ ਅੰਦਰ ਸਟੇਸ਼ਨਰੀ ਨਹੀਂ ਹੁੰਦੀ। ਸਟੈੱਲਾ ਦੀ ਰੈਸਟ ਫ੍ਰੇਮ ਤੋਂ ਵਿਸ਼ਲੇਸ਼ਿਤ ਕਰਨ ਤੇ, ਉਹ ਸਾਰੇ ਟ੍ਰਿਪ ਵਾਸਤੇ ਗਤੀਹੀਣ ਰਹਿੰਦੀ ਹੈ। ਜਦੋਂ ਉਹ ਬਗੈਰ ਕਿਸੇ ਇੰਜਣ ਦੇ ਅਰਾਮ ਨਾਲ ਜਾ ਰਹੀ ਹੁੰਦੀ ਹੈ, ਉਦੋਂ ਉਸਦੀ ਰੈਸਟ ਫ੍ਰੇਮ ਇਨ੍ਰਸ਼ੀਅਲ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਟੇਰੈਂਸ ਦਾ ਕਲੌਕ ਧੀਮਾ ਚਲਦਾ ਮਹਿਸੂਸ ਹੁੰਦਾ ਹੈ। ਪਰ ਜਦੋਂ ਉਹ ਵਾਪਸ ਮੁੜਨ ਲਈ ਅਪਣੇ ਰਾਕਟ ਨੂੰ ਅੱਗ ਲਗਾਉਂਦੀ ਹੈ, ਤਾਂ ਉਸਦੀ ਰੈਸਟ ਫ੍ਰੇਮ ਇੱਕ ਪ੍ਰਵੇਗਿਤ ਫ੍ਰੇਮ ਬਣ ਜਾਂਦੀ ਹੈ ਅਤੇ ਉਹ ਇੱਕ ਅਜਿਹਾ ਬਲ ਅਨੁਭਵ ਕਰਦੀ ਹੈ ਜੋ ਉਸਨੂੰ ਇਸਤਰਾਂ ਧੱਕ ਰਿਹਾ ਹੁੰਦਾ ਹੈ ਜਿਵੇਂ ਉਹ ਕਿਸੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਵਿੱਚ ਹੋਵੇ। ਟੈਰੈਂਸ ਓਸ ਫੀਲਡ ਵਿੱਚ ਉੱਚਾ ਦਿਸੇਗਾ ਅਤੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਟਾਈਮ ਡਿਲੇਸ਼ਨ ਕਾਰਣ, ਉਸਦਾ ਕਲੌਕ ਤੇਜ਼ ਭੱਜਦਾ ਦਿਸੇਗਾ, ਤਾਂ ਜੋ ਅੰਤਿਮ ਨਤੀਜਾ ਇਹ ਰਹੇ ਕਿ ਟੇਰੈਂਸ ਦੀ ਉਮਰ ਸਟੈੱਲਾ ਨਾਲ਼ੋਂ ਜਿਆਦਾ ਬੀਤੀ ਹੋਵੇ ਜਦੋਂ ਉਹ ਵਾਪਿਸ ਇਕੱਠੇ ਹੋਣ।[29] ਜਿਵੇਂ ਅਗਲੇ ਆਉਣ ਵਾਲੇ ਹਿੱਸੇ ਵਕਤ ਦਾ ਕਰਵੇਚਰ ਵਿੱਚ ਚਰਚਾ ਕੀਤੀ ਜਾਵੇਗੀ, ਗਰੈਵੀਟੇਸ਼ਨਲ ਟਾਈਮ ਡਿਲੇਸ਼ਨ ਅਨੁਮਾਨਿਤ ਕਰ ਰਹੀਆਂ ਸਿਧਾਂਤਿਕ ਆਰਗੂਮੈਂਟਾਂ ਨਜਲ ਲਈ ਬਾਹਰੀ ਨਹੀਂ ਹਨ। ਗਰੈਵਿਟੀ ਦੀ ਕੋਈ ਵੀ ਥਿਊਰੀ ਗਰੈਵੀਟੇਸ਼ਨਲ ਟਾਈਮ ਡਿਲੇਸ਼ਨ ਅਨੁਮਾਨਿਤ ਕਰੇਗੀ ਜੇਕਰ ਇਹ ਸਮਾਨਤਾ ਸਿਧਾਂਤ ਦੀ ਪਾਲਣਾ ਕਰੇਗੀ, ਜਿਸ ਵਿੱਚ ਨਿਊਟਨ ਦੀ ਥਿਊਰੀ ਸ਼ਾਮਿਲ ਹੈ।[17]: 16
ਗਰੈਵੀਟੇਸ਼ਨ
[ਸੋਧੋ]ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ
ਇਹ ਜਾਣ-ਪਛਾਣਾਤਮਿਕ ਹਿੱਸਾ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਸਪੇਸਟਾਈਮ ਉੱਤੇ ਕੇਂਦ੍ਰਿਤ ਕੀਤਾ ਗਿਆ ਹੈ, ਕਿਉਂਕਿ ਇਸਨੂੰ ਦਰਸਾਉਣਾ ਸਭ ਤੋਂ ਜਿਆਦਾ ਅਸਾਨ ਹੈ। ਮਿੰਕੋਵਸਕੀ ਸਪੇਸਟਾਈਮ ਫਲੈਟ ਹੁੰਦੀ ਹੈ, ਜੋ ਗਰੈਵਿਟੀ ਨੂੰ ਸ਼ਾਮਿਲ ਨਹੀਂ ਕਰਦੀ, ਸਭ ਜਗਹ ਇੱਕਸਾਰ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਅਪਣੇ ਅੰਦਰ ਵਾਪਰਦੀਆਂ ਘਟਨਾਵਾਂ ਵਾਸਤੇ ਇੱਕ ਸਥਿਰ ਪਿਛੋਕੜ ਤੋਂ ਜਿਆਦਾ ਹੋਰ ਕੁੱਝ ਨਹੀਂ ਪੇਸ਼ ਕਰਦੀ। ਗਰੈਵਿਟੀ ਦੀ ਹਾਜ਼ਰੀ ਵਿਸ਼ਾਲ ਪੱਧਰ ਤੇ ਸਪੇਸਟਾਈਮ ਦੀ ਵਿਆਖਿਆ ਨੂੰ ਗੁੰਝਲਦਾਰ ਕਰਦੀ ਹੈ। ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ, ਸਪੇਸਟਾਈਮ ਹੋਰ ਜਿਆਦਾ ਦੇਰ ਕੋਈ ਸਥਿਰ ਪਿਛੋਕੜ ਨਹੀਂ ਰਹਿੰਦਾ, ਸਗੋਂ ਕ੍ਰਿਆਤਮਿਕ ਤੌਰ ਤੇ ਅਪਣੇ ਅੰਦਰਲੇ ਭੌਤਿਕੀ ਸਿਸਟਮਾਂ ਨਾਲ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਕਰਦਾ ਹੈ। ਪਦਾਰਥ ਦੀ ਹਾਜ਼ਰੀ ਅੰਦਰ ਸਪੇਸਟਾਈਮ ਕਰਵਾਂ, ਤਰੰਗਾਂ ਦਾ ਸੰਚਾਰ ਕਰ ਸਕਦੀਆਂ ਹਨ, ਪ੍ਰਕਾਸ਼ ਨੂੰ ਮੋੜ ਸਕਦੀਆਂ ਹਨ, ਅਤੇ ਹੋਰ ਬਹੁਤ ਸਾਰੇ ਵਰਤਾਰੇ ਪ੍ਰਦ੍ਰਸ਼ਿਤ ਕਰਨ ਲਈ ਜਗਹ ਦੇ ਸਕਦੀਆਂ (ਮੇਜ਼ਬਾਨੀ ਕਰ ਸਕਦੀਆਂ) ਹਨ।[17]: 221 ਕੁੱਝ ਅਜਿਹੇ ਵਰਤਾਰੇ ਇਸ ਲੇਖ ਦੇ ਬਾਦ ਦੇ ਹਿੱਸਿਆਂ ਵਿੱਚ ਦਰਸਾਏ ਗਏ ਹਨ।
ਸਪੇਸਟਾਈਮ ਦਾ ਬੁਨਿਆਦੀ ਗਣਿਤ
[ਸੋਧੋ]
ਗੈਲੀਲੀਅਨ ਰੂਪਾਂਤ੍ਰਨ
[ਸੋਧੋ]
ਇੱਕ ਬੁਨਿਆਦੀ ਮੰਤਵ, ਸਾਪੇਖਿਕ ਗਤੀ ਵਿੱਚ ਔਬਜ਼ਰਵਰਾਂ ਦੁਆਰਾ ਲਏ ਗਏ ਨਾਪਾਂ ਦੀ ਤੁਲਨਾ ਕਰਨ ਦੇ ਯੋਗ ਹੋਣਾ ਹੈ। ਮੰਨ ਲਓ ਸਾਡੇ ਕੋਲ ਫ੍ਰੇਮ S ਵਿੱਚ ਔਬਜ਼ਰਵਰ O ਹੈ ਜੋ ਕਿਸੇ ਘਟਨਾ ਨੂੰ ਤਿੰਨ ਕਾਰਟੀਜ਼ੀਅਨ ਨਿਰਦੇਸ਼ਾਂਕ ਅਤੇ ਉਸਦੇ ਮੇਲ ਕੀਤੇ ਹੋਏ ਕਲੌਕਾਂ (x, y, z, t) (ਦੇਖੋ ਚਿੱਤਰ. 1‑1) ਦੇ ਜਾਲ ਉੱਤੇ ਨਾਪਿਆ ਗਿਆ ਵਕਤ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ। ਇੱਕ ਵੱਖਰੀ ਫ੍ਰੇਮ S’ ਅੰਦਰਲਾ ਇੱਕ ਦੂਜਾ ਔਬਜ਼ਰਵਰ ਉਸਦੇ “ਕੋ-ਆਰਡੀਨੇਟ ਸਿਸਟਮ” ਵਿੱਚ ਓਸੇ ਘਟਨਾ ਅਤੇ ਮੇਲ ਕੀਤੇ ਹੋਏ (', ', ', ') ਕਲੌਕਾਂ ਦੇ ਜਾਲ ਨੂੰ ਨਾਪਦਾ ਹੈ। ਕਿਉਂਕਿ ਅਸੀਂ ਇਨ੍ਰਸ਼ੀਅਲ ਫ੍ਰੇਮਾਂ ਨਾਲ ਵਰਤ ਰਹੇ ਹੁੰਦੇ ਹਾਂ, ਇਸਲਈ ਕੋਈ ਵੀ ਔਬਜ਼ਰਵਰ ਪ੍ਰਵੇਗ (ਐਕਸਲ੍ਰੇਸ਼ਨ) ਅਧੀਨ ਨਹੀਂ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਸਮੀਕਰਨਾਂ ਦਾ ਇੱਕ ਸਰਲ ਸੈੱਟ ਸਾਨੂੰ ਨਿਰਦੇਸ਼ਾਂਕਾਂ (x, y, z, t) ਨੂ੍ੰ ਨਿਰਦੇਸ਼ਾਂਕਾਂ (', ', ', ') ਨਾਲ ਸਬੰਧਤ ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ। ਇਹ ਦਿੱਤਾ ਹੋਣ ਤੇ ਕਿ ਦੋ “ਕੋ-ਆਰਡੀਨੇਟ ਸਿਸਟਮ” ਮਿਆਰੀ ਰਚਨਾ ਵਿੱਚ ਹਨ, ਇਹ ਅਰਥ ਨਿਕਲਦਾ ਹੈ ਕਿ ਇਹ (x, y, z) ਨਿਰਦੇਸ਼ਾਂਕਾਂ ਨਾਲ ਸਮਾਂਤਰ ਰੱਖੇ ਹੁੰਦੇ ਹਨ ਅਤੇ t = 0 ਹੁੰਦਾ ਹੈ ਜਦੋਂ ' = 0 ਹੋਵੇ, ਤਾਂ ਨਿਰਦੇਸ਼ਾਂਕ ਰੂਪਾਂਤ੍ਰਨ ਇਸ ਤਰਾਂ ਹੁੰਦਾ ਹੈ:[30][31]
ਚਿੱਤਰ. 3-1 ਸਮਝਾਉਂਦਾ ਹੈ ਕਿ ਨਿਊਟਨ ਦੀ ਥਿਊਰੀ ਅੰਦਰ, ਸਮਾਂ ਯੂਨੀਵਰਸਲ (ਸੰਸਾਰੀ) ਹੁੰਦਾ ਹੈ, ਨਾ ਕਿ ਪ੍ਰਕਾਸ਼ ਦੀ ਵਿਲੌਸਟੀ।[32]: 36–37 ਅੱਗੇ ਲਿਖਿਆ ਸੋਚ ਪ੍ਰਯੋਗ ਵਿਚਾਰੋ: ਲਾਲ ਤੀਰ ਪਲੇਟਫਾਰਮ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ 0.4 c ਉੱਤੇ ਗਤੀਸ਼ੀਲ ਕੋਈ ਰੇਲਗੱਡੀ ਦਿਖਾਉਂਦਾ ਹੈ। ਰੇਲਗੱਡੀ ਅੰਦਰ, ਕੋਈ ਯਾਤਰੀ ਗੋਲੀ ਸ਼ੂਟ ਕਰਦਾ ਹੈ ਜੋ ਰੇਲਗੱਡੀ ਦੀ ਫ੍ਰੇਮ ਅੰਦਰ 0.4 c ਦੀ ਸਪੀਡ ਵਾਲੀ ਹੁੰਦੀ ਹੈ। ਨੀਲ ਤੀਰ ਸਮਝਾਉਂਦਾ ਹੈ ਕਿ ਰੇਲਗੱਡੀ ਦੀ ਪਟੜੀ ਉੱਤੇ ਖੜਾ ਕੋਈ ਇਨਸਾਨ ਗੋਲੀ ਦੀ ਸਪੀਡ ਨੂੰ 0.8 c ਨਾਪਦਾ ਹੈ। ਇਹ ਸਾਡੀਆਂ ਮੂਲ ਉਮੀਦਾਂ ਅਨੁਸਾਰ ਹੀ ਹੈ।
ਹੋਰ ਸਰਵ ਸਧਾਰਨ ਤੌਰ ਤੇ, ਮੰਨ ਲਓ ਫ੍ਰੇਮ S ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਫ੍ਰੇਮ S’ ਵਿਲੌਸਿਟੀ v ਨਾਲ ਗਤੀ ਕਰ ਰਹੀ ਹੈ। ਫ੍ਰੇਮ S’ ਅੰਦਰ, ਔਬਜ਼ਰਵਰ O’ ਕਿਸੇ ਚੀਜ਼ ਨੂੰ ਵਿਲੌਸਿਟੀ ' ਨਾਲ ਗਤੀਸ਼ੀਲ ਹੁੰਦੀ ਨਾਪਦਾ ਹੈ। ਫ੍ਰੇਮ S ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਇਸਦੀ ਵਿਲੌਸਿਟੀ u ਕੀ ਹੁੰਦੀ ਹੈ? ਕਿਉਂਕਿ x = ut, ' = x − vt, ਅਤੇ t = ' ਹੁੰਦਾ ਹੈ, ਇਸਲਈ ਅਸੀਂ ' = ut − vt = (u − v)t = (u − v)' ਲਿਖ ਸਕਦੇ ਹਾਂ। ਇਹ ' = '/' ਵੱਲ ਲਿਜਾਂਦਾ ਹੈ ਅਤੇ ਅੰਤ ਨੂੰ
- or
ਜੋ ਸਾਂਝੀ-ਸਮਝ ਵਿਲੌਸਟੀਆਂ ਦੇ ਜੋੜ ਵਾਸਤੇ ਗੈਲੀਲੀਅਨ ਨਿਯਮ ਹੈ।
ਵਿਲੌਸਟੀਆਂ ਦੀ ਸਾਪੇਖਿਕ ਬਣਤਰ
[ਸੋਧੋ]
’‘‘‘‘ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ’’’’’
ਵਿਲੌਸਿਟੀਆਂ ਦੀ ਬਣਤਰ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਸਪੇਸਟਾਈਮ ਅੰਦਰ ਕਾਫੀ ਵੱਖਰੀ ਹੁੰਦੀ ਹੈ। ਸਮੀਕਰਨਾਂ ਦੀ ਗੁੰਝਲਦਾਰਤਾ ਨੂੰ ਕੁੱਝ ਘਟਾਉਣ ਵਾਸਤੇ, ਅਸੀਂ ਪ੍ਰਕਾਸ਼ ਦੇ ਸਾਪੇਖਿਕ ਕਿਸੇ ਚੀਜ਼ ਦੀ ਸਪੀਡ ਦੇ ਅਨੁਪਾਤ ਵਾਸਤੇ ਇੱਕ ਸਾਂਝੀ ਸ਼ੌਰਟਹੈਂਡ ਪੇਸ਼ ਕਰਦੇ ਹਾਂ,
ਚਿੱਤਰ. 3-2a ਇੱਕ ਲਾਲ ਟ੍ਰੇਨ (ਰੇਲਗੱਡੀ) ਦਿਖਾਉਂਦਾ ਹੈ ਜੋ v/c = β = s/a ਦੀ ਸਪੀਡ ਉੱਤੇ ਅੱਗੇ ਗਤੀਸ਼ੀਲ ਹੁੰਦੀ ਹੈ। ਟ੍ਰੇਨ ਦੇ ਪ੍ਰਾਈਮ ਕੀਤੇ ਗਏ ਮੱਥੇ ਤੋਂ, ਇੱਕ ਯਾਤਰੀ '/c = ' = n/m ਦੀ ਸਪੀਡ ਉੱਤੇ ਇੱਕ ਗੋਲੀ ਸ਼ੂਟ ਕਰਦਾ ਹੇ, ਜਿੱਥੇ ਦੂਰੀ (ਡਿਸਟੈਂਸ) ਨੂੰ ਲਾਲ ' ਧੁਰੇ ਦੇ ਸਮਾਂਤਰ ਕਿਸੇ ਰੇਖਾ ਦੇ ਨਾਲ ਨਾਲ ਨਾਪਿਆ ਜਾਂਦਾ ਹੈ ਨਾ ਕਿ ਕਾਲੇ x-ਧੁਰੇ ਦੇ ਸਮਾਂਤਰ। ਜਿਵੇਂ ਨੀਲੇ ਤੀਰ ਦੁਆਰਾ ਪ੍ਰਸਤੁਤ ਕੀਤਾ ਗਿਆ ਹੈ, ਪਲੇਟਫਾਰਮ ਦੇ ਸਾਪੇਖਿਕ ਗੋਲੀ ਦੀ ਮਿਸ਼ਰਤ ਵਿਲੌਸਿਟੀ u ਕੀ ਹੈ? ਚਿੱਤਰ. 3‑2b ਵੱਲ ਇਸ਼ਾਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ:
ਵਿਲੌਸਟੀਆਂ ਦੇ ਜੋੜ ਵਾਸਤੇ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਫਾਰਮੂਲਾ ਜੋ ਉੱਪਰ ਦਰਸਾਇਆ ਗਿਆ ਹੈ ਕਈ ਮਹੱਤਵਪੂਰਨ ਲੱਛਣ ਦਿਖਾਉਂਦਾ ਹੈ:
- ਜੇਕਰ ' ਅਤੇ v ਦੋਵੇਂ ਹੀ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਨਾਲ ਬਹੁਤ ਥੋੜੇ ਜਿਹੇ ਕੰਪੇਅਰ (ਤੁਲਨਾ) ਕੀਤੇ ਜਾਣ, ਤਾਂ ਗੁਣਨਫਲ '/c2 ਬਹੁਤ ਸੂਖਮ ਬਣ ਜਾਂਦਾ ਹੈ, ਅਤੇ ਕੁੱਲ ਨਤੀਜਾ ਵਿਲੌਸਟੀਆਂ ਦੇ ਇਸ ਜੋੜ ਲਈ ਗੈਲੀਲੀਅਨ ਫਾਰਮੂਲੇ (ਨਿਊਟਨ ਦੇ ਫਾਰਮੂਲੇ) ਵਰਗਾ ਬਣ ਜਾਂਦਾ ਹੈ: u = ' + v। ਗੈਲੀਲੀਅਨ ਫਾਰਮੂਲਾ ਨਿਮਨ ਵਿਲੌਸਟੀਆਂ ਪ੍ਰਤਿ ਲਾਗੂਹੋਣਯੋਗ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਫਾਰਮੂਲੇ ਦਾ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਮਾਮਲਾ ਹੈ।
- ਜੇਕਰ ' ਨੂੰ c ਬਰਾਬਰ ਸੈੱਟ ਕੀਤਾ ਜਾਵੇ, ਤਾਂ ਫਾਰਮੂਲਾ, u = c ਦਿੰਦਾ ਹੈ ਭਾਵੇਂ v ਦੀ ਸ਼ੁਰੂਆਤੀ ਕੀਮਤ ਕੁੱਝ ਵੀ ਹੋਵੇ। ਪ੍ਰਕਾਸ਼ ਦੀ ਵਿਲੌਸਟੀ ਸਾਰੇ ਔਬਜ਼ਰਵਰਾਂ ਵਾਸਤੇ ਇੱਕੋ ਰਹਿੰਦੀ ਹੈ ਭਾਵੇਂ ਉਹਨਾਂ ਦੀਆਂ ਗਤੀਆਂ ਪ੍ਰਕਾਸ਼ ਦਾ ਨਿਕਾਸ ਕਰਨ ਵਾਲ਼ੇ ਸੋਮੇ ਦੇ ਸਾਪੇਖਿਕ ਕੁੱਝ ਵੀ ਹੋਣ।[32]: 49
ਸਮਾਂ ਦੇਰੀ ਅਤੇ ਲੰਬਾਈ ਸੁੰਗੜਨਾ ਦੋਹਰਾਅ
[ਸੋਧੋ]
’‘‘‘‘ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ’’’’’
ਸਮਾਂ ਦੇਰੀ ਅਤੇ ਲੰਬਾਈ ਸੁੰਗੜਨ ਬਾਰੇ, ਗੁਣਾਤਮਿਕ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਅਸੀਂ ਪਹਿਲਾਂ ਹੀ ਚਰਚਾ ਕਰ ਚੁੱਕੇ ਹਾਂ। ਇਹਨਾਂ ਅਸਰਾਂ ਵਾਸਤੇ ਮਾਤ੍ਰਾਤਮਿਕ ਸਮੀਕਰਨਾਂ ਪ੍ਰਾਪਤ ਕਰਨੀਆਂ ਸਿੱਧੀ ਗੱਲ ਹੀ ਹੈ। ਚਿੱਤਰ. 3‑3 ਇਸ ਹਿੱਸੇ ਦੇ ਮੰਤਵਾਂ ਲਈ ਦੋਵੇਂ ਪਿਛਲੀਆਂ ਐਨੀਮੇਸ਼ਨਾਂ ਤੋਂ ਲਈਆਂ ਗਈਆਂ, ਸਰਲ ਕੀਤੀਆਂ ਹੋਈਆਂ ਅਤੇ ਪੁਨਰ-ਨਾਮਬੱਧ ਕੀਤੀਆਂ ਹੋਈਆਂ ਵਿਅਕਤੀਗਤ ਫ੍ਰੇਮਾਂ ਰੱਖਣ ਵਾਲੀ ਮਿਸ਼ਰਤ ਤਸਵੀਰ ਹੈ।
ਸਮੀਕਰਨਾਂ ਦੀ ਗੁੰਝਲਦਾਰਤਾ ਨੂੰ ਕੁੱਝ ਘਟਾਉਣ ਵਾਸਤੇ, ਅਸੀਂ ਸਾਹਿਤ ਵਿੱਚ ct  ਲਈ ਵੱਖਰੀਆਂ ਸ਼ੌਰਟਹੈਂਡ ਚਿੰਨ-ਧਾਰਨਾਵਾਂ ਦੀ ਇੱਕ ਵੈਰਾਇਟੀ ਦੇਖਦੇ ਹਾਂ;:
- ਅਤੇ ਆਮ ਹਨ।
- ਪ੍ਰੰਪਰਾ ਦੀ ਅਕਸਰ ਵਰਤੋਂ ਵੀ ਦੇਖੀ ਜਾਂਦੀ ਹੈ।
ਚਿੱਤਰ. 3-3a ਵਿੱਚ, ਹਿੱਸੇ OA ਅਤੇ OK ਇੱਕ ਸਮਾਨ ਸਪੇਸਟਾਈਮ ਅਰਸੇ ਪ੍ਰਸਤੁਤ ਕਰਦੇ ਹਨ। ਸਮਾਂ ਦੇਰੀ ਨੂੰ ਅਨੁਪਾਤ OB/OK ਰਾਹੀਂ ਪ੍ਰਸਤੁਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਨਵੇਰੀਅੰਟ ਹਾਈਪ੍ਰਬੋਲਾ ਸਮੀਕਰਨ w = √x2 + k2 ਰੱਖਦਾ ਹੈ ਜਿੱਥੇ k = OK, ਅਤੇ ਲਾਲ ਰੇਖਾ, w = x/β = xc/v ਸਮੀਕਰਨ ਵਾਲੀ ਗਤੀ ਵਾਲੇ ਕਿਸੇ ਕਣ ਦੀ ਸੰਸਾਰ ਰੇਖਾ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਦੇ ਹਨ। ਕੁੱਝ ਅਲਜਬ੍ਰਿਕ ਦਖਲ-ਅੰਦਾਜ਼ੀ ਪੈਦਾ ਕਰਦੀ ਹੈ।
ਵਰਗਮੂਲ ਚਿੰਨ ਸਮੇਤ ਵਾਲੀ ਸਮੀਕਰਨ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ ਬਹੁਤ ਵਾਰ ਦਿਸਦੀ ਹੈ, ਅਤੇ ਇੱਕ ਬਟਾ ਇਹ ਸਮੀਕਰਨ (1/ਸਮੀਕਰਨ) ਨੂੰ ਲੌਰੰਟਜ਼ ਫੈਕਟਰ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਜੋ ਗ੍ਰੀਕ ਅੱਖਰ ਗਾਮਾ ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ:[33]
ਅਸੀਂ ਨੋਟ ਕਰਦੇ ਹਾਂ ਕਿ ਜੇਕਰ v, c ਤੋਂ ਵੱਡੀ ਜਾਂ ਬਰਾਬਰ ਹੋਵੇ, ਤਾਂ ਵਾਸਤੇ ਸਮੀਕਰਨ ਭੌਤਿਕੀ ਤੌਰ ਤੇ ਬੇਅਰਥ ਹੋ ਜਾਂਦੀ ਹੈ, ਜਿਸਦਾ ਅਰਥ ਹੈ ਕਿ c, ਕੁਦਰਤ ਵਿੱਚ ਵੱਧ ਤੋਂ ਵੱਧ ਸੰਭਵ ਸਪੀਡ ਹੈ। ਇਸਤੋਂ ਬਾਦ, ਅਸੀਂ ਨੋਟ ਕਰਦੇ ਹਾਂ ਕਿ ਜ਼ੀਰੋ ਤੋਂ ਵੱਧ ਕਿਸੇ ਵੀ v ਲਈ, ਲੌਰੰਟਜ਼ ਫੈਕਟਰ ਇੱਕ ਤੋਂ ਵੱਡਾ ਹੋਵੇਗਾ, ਭਾਵੇਂ ਕਰਵ ਦੀ ਸ਼ਕਲ ਅਜਿਹੀ ਹੁੰਦੀ ਹੈ ਕਿ ਨਿਮਨ ਸਪੀਡਾਂ ਵਾਸਤੇ, ਲੌਰੰਟਜ਼ ਫੈਕਟਰ ਇੱਕ ਦੇ ਅੱਤ (ਬਹੁਤ ਜਿਆਦਾ) ਨੇੜੇ ਹੁੰਦਾ ਹੈ।
ਚਿੱਤਰ. 3-3b ਵਿੱਚ, ਹਿੱਸੇ OA ਅਤੇ OK ਇੱਕ ਸਮਾਨ ਸਪੇਸਟਾਈਮ ਅਰਸੇ ਪ੍ਰਸਤੁਤ ਕਰਦੇ ਹਨ। ਲੰਬਾਈ ਸੁੰਗੜਨ ਨੂੰ ਅਨੁਪਾਤ OB/OK ਨਾਲ ਦਿਖਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਨਵੇਰੀਅੰਟ ਹਾਈਪ੍ਰਬੋਲੇ ਦੀ ਸਮੀਕਰਨ x = √w2 + k2 ਹੁੰਦੀ ਹੈ, ਜਿੱਥੇ k = OK, ਅਤੇ ਨੀਲੇ ਬੈਂਡ ਦੇ ਕਿਨਾਰੇ ਸਲੋਪ (ਢਲਾਣ) 1/β = c/v ਵਾਲੀ ਗਤੀ ਵਿੱਚ ਕਿਸੇ ਰੌਡ ਦੇ ਸਿਰਿਆਂ ਦੀਆਂ ਸੰਸਾਰ ਰੇਖਾਵਾਂ ਪ੍ਰਸਤੁਤ ਕਰਦੇ ਹਨ। ਘਟਨਾ A ਦੇ ਨਿਰਦੇਸ਼ਾਂਕ ਇਹ ਹੁੰਦੇ ਹਨ;
(x, w) = (γk, γβk)। ਕਿਉਂਕਿ A ਅਤੇ B ਰਾਹੀਂ ਸਪਰਸ਼ ਰੇਖਾ ਦੀ ਸਮੀਕਰਨ w = (x − OB)/β ਹੁੰਦੀ ਹੈ, ਇਸਲਈ ਅਸੀਂ γβk = (γk − OB)/β ਅਤੇ;
ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ।
ਲੌਰੰਟਜ਼ ਰੂਪਾਂਤ੍ਰਨ
[ਸੋਧੋ]
’‘‘‘‘ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ’’’’’
ਗੈਲੀਲੀਅਨ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਅਤੇ ਵਿਲੌਸਟੀਆਂ ਦੇ ਜੋੜ ਦੇ ਉਹਨਾ ਦੇ ਅਗਲੇ ਸਾਂਝੀ-ਬੁੱਧੀ ਦੇ ਨਿਯਮ, ਪਲੇਨਾਂ, ਕਾਰਾਂ ਅਤੇ ਗੇਂਦਾਂ ਦੇ ਸਾਡੇ ਸਧਾਰਨ ਘੱਟ-ਸਪੀਡ ਵਾਲੇ ਸੰਸਾਰ ਵਿੱਚ ਬਹੁਤ ਚੰਗੀ ਤਰਾਂ ਕੰਮ ਕਰਦੇ ਹਨ। ਮੱਧ-1800ਵੇਂ ਦਹਾਕੇ ਦੀ ਸ਼ੁਰੂਆਤ ਵਿੱਚ, ਕਿਵੇਂ ਨਾ ਕਿਵੇਂ, ਸੰਵੇਦਨਸ਼ੀਲ ਵਿਗਿਆਨਿਕ ਉਪਕਰਣਾਤਮਿਕਤਾ ਨੇ ਅਜਿਹੀਆਂ ਵਿਸੰਗਤੀਆਂ (ਬੇਮੇਲਤਾਵਾਂ) ਖੋਜਣੀਆਂ ਸ਼ੁਰੂ ਕਰ ਦਿੱਤੀਆਂ ਸਨ, ਜੋ ਵਿਲੌਸਟੀਆਂ ਦੇ ਸਧਾਰਨ ਜੋੜ ਨਾਲ ਫਿੱਟ ਨਹੀਂ ਬੈਠਦੀਆਂ ਸਨ।
ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ ਇੱਕ ਫ੍ਰੇਮ ਤੋਂ ਕਿਸੇ ਦੂਜੀ ਫ੍ਰੇਮ ਵਿੱਚ ਕਿਸੇ ਘਟਨਾ ਦੇ ਨਿਰਦੇਸ਼ਾਂਕਾਂ ਨੂੰ ਰੂਪਾਂਤ੍ਰਿਤ ਕਰਨ ਵਾਸਤੇ, ਅਸੀਂ ਲੌਰੰਟਜ਼ ਰੂਪਾਂਤ੍ਰਨਾਂ ਵਰਤਦੇ ਹਾਂ।
ਲੌਰੰਟਜ਼ ਰੂਪਾਂਤ੍ਰਨਾਂ ਅੰਦਰ ਲੌਰੰਟਜ਼ ਫੈਕਟਰ ਦਿਸਦਾ ਹੈ:
ਉਲਟੀਆਂ ਲੌਰੰਟਜ਼ ਰੂਪਾਂਤ੍ਰਨਾਂ ਇਹ ਹੁੰਦੀਆਂ ਹਨ:
ਜਦੋਂ v ≪ c ਹੁੰਦੀ ਹੈ, ਤਾਂ v2/c2 ਅਤੇ vx/c2 ਰਕਮਾਂ ਜ਼ੀਰੋ ਨੇੜੇ ਪਹੁੰਚ ਜਾਂਦੀਆਂ ਹਨ, ਅਤੇ ਲੌਰੰਟਜ਼ ਰੂਪਾਂਤ੍ਰਨਾਂ ਗੈਲੀਲੀਅਨ ਰੂਪਾਂਤ੍ਰਨਾਵਾਂ ਦੇ ਤਕਰੀਬਨ ਬਰਾਬਰ ਹੋ ਜਾਂਦੀਆਂ ਹਨ।
ਜਿਵੇਂ ਪਹਿਲਾਂ ਵੀ ਨੋਟ ਕੀਤਾ ਗਿਆ ਹੈ, ਜਦੋਂ ਅਸੀਂ ਅਤੇ ਹੋਰ ਅੱਗੇ ਇਸੇਤਰਾਂ ਲਿਖਦੇ ਜਾਂਦੇ ਹਾਂ, ਤਾਂ ਜਿਆਦਾਤਰ ਅਕਸਰ ਸਾਡਾ ਭਾਵ ਵਾਸਤਵਿਕ ਤੌਰ ਤੇ ਆਦਿ ਹੁੰਦਾ ਹੈ। ਭਾਵੇਂ, ਬਹਾਦਰ ਬਣਦੇ ਹੋਏ, ਅਸੀਂ ਲੌਰੰਟਜ਼ ਰੂਪਾਂਤ੍ਰਨਾਂ ਨੂੰ ਡੈਲਟਿਆਂ ਟੌਪੌਲੌਜੀ ਬਗੈਰ ਹੀ ਲਿਖਦੇ ਹਾਂ, ਫੇਰ ਵੀ ਇਹ ਸਮਝ ਲੈਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ x ਦਾ ਅਰਥ Δx ਹੈ, ਆਦਿ। ਅਸੀਂ, ਆਮਤੌਰ ਤੇ, ਹਮੇਸ਼ਾਂ ਹੀ ਘਟਨਾਵਾਂ ਦਰਮਿਆਨ ਸਪੇਸ ਅਤੇ ਸਮੇਂ ਦੇ ਅੰਤਰਾਂ ਨਾਲ ਵਾਸਤਾ ਰੱਖਦੇ ਹਾਂ।
ਨਾਮਕਰਨ ਉੱਤੇ ਨੋਟ: ਰੂਪਾਂਤ੍ਰਨਾਂ ਦੇ ਇੱਕ ਸੈੱਟ ਨੂੰ ਨੌਰਮਲ ਲੌਰੰਟਜ਼ ਰੂਪਾਂਤ੍ਰਨਾਂ ਕਹਿਣਾ ਅਤੇ ਦੂਜੇ ਨੂੰ ਉਲਟ ਰੂਪਾਂਤ੍ਰਨ ਕਹਿਣਾ ਗਲਤਵਹਿਮੀ ਪੈਦਾ ਕਰਦਾ ਹੈ, ਕਿਉਂਕਿ ਫ੍ਰੇਮਾਂ ਦਰਮਿਆਨ ਕੋਈ ਅੰਦਰੂਨੀ ਅੰਤਰ ਨਹੀਂ ਹੁੰਦਾ। ਵੱਖਰੇ ਵਿਦਵਾਨ ਇੱਕ ਜਾਂ ਦੂਜੇ ਰੂਪਾਂਤ੍ਰਨ ਸੈੱਟ ਨੂੰ ਉਲਟਾ ਸੈੱਟ ਪੁਕਾਰਦੇ ਹਨ। ਅੱਗੇ ਵੱਲ ਦੀਆਂ ਅਤੇ ਉਲਟ ਰੂਪਾਂਤ੍ਰਨਾਂ ਇੱਕ ਦੂਜੇ ਪ੍ਰਤਿ ਸੂਖਮ ਤੌਰ ਤੇ ਸਬੰਧਤ ਹੁੰਦੀਆਂ ਹਨ, ਕਿਉਂਕਿ S ਫ੍ਰੇਮ ਸਿਰਫ ਅੱਗੇ ਵੱਲ ਨੂੰ ਗਤੀਸ਼ੀਲ ਹੋ ਸਕਦੀ ਹੈ ਜਾਂ ' ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਉਲਟ ਹੋ ਸਕਦੀ ਹੈ। ਇਸਲਈ, ਸਮੀਕਰਨਾਂ ਨੂੰ ਉਲਟਾ ਦੇਣਾ ਸਰਲ ਤੌਰ ਤੇ ਪਰਾਈਮ ਕੀਤੇ ਅਤੇ ਗੈਰ-ਪ੍ਰਾਈਮ ਕੀਤੇ ਅਸਥਿਰਾਂਕਾਂ ਨੂੰ ਅਤੇ v ਨੂੰ −v ਨਾਲ ਬਦਲ ਦੇਣਾ ਹੀ ਹੈ।[34]: 71–79
ਉਦਾਹਰਨ: ਟੇਰੈਂਸ ਅਤੇ ਸਟੈੱਲਾ ਧਰਤੀ ਤੋਂ ਮੰਗਲ ਗ੍ਰਹਿ ਤੱਕ ਸਪੇਸ ਰੇਸ ਉੱਤੇ ਹਨ। ਟੇਰੈਂਸ ਸ਼ੁਰੂਆਤੀ ਰੇਖਾ ਉੱਤੇ ਇੱਕ ਔਫੀਸ਼ੀਅਲ ਹੈ, ਜਦੋਂਕਿ ਸਟੈੱਲਾ ਇੱਕ ਪ੍ਰਤਿਯੋਗੀ ਹੈ। t = ' = 0 ਸਮੇਂ ਉੱਤੇ, ਸਟੈੱਲਾ ਦਾ ਸਪੇਸ਼-ਸ਼ਿਪ ਤਤਕਾਲੀਨ ਇੱਕ ਸਪੀਡ 0.5 c ਤੱਕ ਪ੍ਰਵੇਗਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਧਰਤੀ ਤੋਂ ਮੰਗਲ ਗ੍ਰਹਿ ਤੱਕ ਦੀ ਦੂਰੀ 300 ਪ੍ਰਕਾਸ਼-ਸਕਿੰਟ (ਤਕਰੀਬਨ 90.0×106 km) ਹੈ। ਟੇਰੈਂਸ ਸਟੈੱਲਾ ਨੂੰ ਫਿਨਿਸ਼-ਲਾਈਨ ਕਲੌਕ t = 600.00 s ਤੇ ਪਾਰ ਕਰਦਾ ਦੇਖਦਾ ਹੈ। ਪਰ ਸਟੈੱਲਾ ਅਪਣੇ ਸ਼ਿਪ-ਕ੍ਰੋਨੋਮੀਟਰ ਉੱਤੇ ਟਾਈਮ ' = (t − vx/c2) = 519.62 s ਹੁੰਦਾ ਪਾਉਂਦੀ ਹੈ ਜਿਓਂ ਹੀ ਉਹ ਫਿਨਿਸ਼ ਲਾਈਨ ਤੋਂ ਗੁਜ਼ਰਦੀ ਹੈ, ਅਤੇ ਉਹ ਸ਼ੁਰੂਆਤੀ ਤੇ ਅੰਤ-ਲਾਈਨ ਦਰਮਿਆਨ ਦੂਰੀ ਨੂੰ ਅਪਣੀ ਫ੍ਰੇਮ ਵਿੱਚ 259.81 ਲਾਈਟ-ਸੈਕੰਡ (ਤਕਰੀਬਨ 77.9×106 km) ਹੁੰਦਾ ਪਾਉਂਦੀ ਹੈ। 1).
ਲੌਰੰਟਜ਼ ਰੂਪਾਂਤ੍ਰਨਾਂ ਵਿਓਂਤਬੰਦ ਕਰਨਾ
[ਸੋਧੋ]
1905 ਵਿੱਚ ਆਈਨਸਟਾਈਨ ਦੇ ਉਰਿਜਿਨਲ ਕੰਮ ਤੋਂ ਬਾਦ ਕਈ ਦਰਜਣਾਂ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਦੀਆਂ ਵਿਓਂਤਬੰਦੀਆਂ ਰਹੀਆਂ ਹਨ, ਜਿਹਨਾਂ ਵਿੱਚੋਂ ਹਰੇਕ ਦਾ ਅਪਣਾ ਵਿਸ਼ੇਸ਼ ਫੋਕਸ ਸੀ। ਭਾਵੇਂ ਆਈਨਸਟਾਈਨ ਦੀ ਡੈਰੀਵੇਸ਼ਨ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਦੀ ਇਨਵੇਰੀਅੰਸ (ਸਥਿਰਤਾ) ਉੱਤੇ ਅਧਾਰਿਤ ਸੀ, ਫੇਰ ਵੀ ਹੋਰ ਭੌਤਿਕੀ ਸਿਧਾਂਤ ਅਜਿਹੇ ਹਨ ਜੋ ਸ਼ੁਰੂਆਤੀ ਬਿੰਦੂਆਂ ਫਦੇ ਤੌਰ ਤੇ ਵਰਤੇ ਜਾ ਸਕਦੇ ਹਨ। ਅੰਤ ਨੂੰ, ਇਹ ਅਲਟ੍ਰਨੇਟਿਵ ਸ਼ੁਰੂਆਤੀ ਬਿੰਦੂ ਸਥਾਨਿਕਤਾ ਸਿਧਾਂਤ ਪਿੱਛੇ ਛੁਪੀਆਂ ਵੱਖਰੀਆਂ ਸਮੀਕਰਨਾਂ ਮੰਨੇ ਜਾ ਸਕਦੇ ਹਨ, ਜੋ ਬਿਆਨ ਕਰਦਾ ਹੈ ਕਿ ਇੱਕ ਦੂਜੇ ਉੱਤੇ ਪਾਏ ਗਏ ਕਣਾਂ ਦੇ ਅਸਰ ਨੂੰ ਇੱਕਦਮ (ਤਤਕਾਲੀਨ) ਸੰਚਾਰਿਤ ਨਹੀਂ ਕੀਤਾ ਸਕਦਾ।[35]
ਇੱਥੇ ਦਿੱਤੀ ਗਈ ਡੈਰੀਵੇਸ਼ਨ ਜੋ ਚਿੱਤਰ. 3‑5 ਵਿੱਚ ਦਿਖਾਈ ਗਈ ਹੈ, ਵਿਲੌਸਟੀਆਂ ਦੇ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਮਿਸ਼ਰਣ, ਟਾਈਮ ਡਿਲੇਸ਼ਨ, ਅਤੇ ਲੈਂਥ ਕੰਟ੍ਰੈਕਸ਼ਨ ਹਿੱਸਿਆਂ ਤੋਂ ਪਿਛਲੇ ਨਤੀਜਿਆਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਬਾਇਸ[32]: 64–66 ਦੀ ਇੱਕ ਪੇਸ਼ਕਸ਼ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ। ਘਟਨਾ P ਦੇ ਨਿਰਦੇਸ਼ਾਂਕ (w, x) ਹੁੰਦੇ ਹਨ ਜੋ ਕਾਲੇ ਰੈਸਟ ਸਿਸਟਮ ਵਿੱਚ ਹੁੰਦੇ ਹਨ ਅਤੇ ਨਿਰਦੇਸ਼ਾਂਕ (', ') ਲਾਲ ਫ੍ਰੇਮ ਵਿੱਚ ਹਨ ਜੋ ਵਿਲੌਸਿਟੀ ਪੈਰਾਮੀਟਰ β = v/c ਨਾਲ ਗਤੀ ਕਰਦੇ ਹਨ। ਅਸੀਂ ' ਅਤੇ ' ਨੂੰ w ਅਤੇ x ਦੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਕਿਵੇਂ ਨਿਰਧਾਰਿਤ ਕਰਦੇ ਹਾਂ? (ਜਾਂ ਕਿਸੇ ਹੋਰ ਤਰਾਂ, ਬਿਲਕੁਲ) ਉਲਟ ਲੌਰੰਟਜ਼ ਰੂਪਾਂਤ੍ਰਨ ਨੂੰ ਪਹਿਲਾਂ ਹੀ ਵਿਓਂਤਬੰਦ ਕਰਨਾ ਅਸਾਨ ਰਹਿੰਦਾ ਹੈ।
- ਅਸੀਂ ਓਹ ਨੋਟ ਕਰਦੇ ਹੋਏ ਸ਼ੁਰੂ ਕਰਦੇ ਹਾਂ ਕਿ ਲੰਬਾਈ ਫੈਲਾਓ/ਸੁੰਗੜਨ ਵਰਗੀ ਕੋਈ ਚੀਜ਼ ਟ੍ਰਾਂਸਵਰਸ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਨਹੀਂ ਹੁੰਦੀ। y' ਜਰੂਰ ਹੀ y ਬਰਾਬਰ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ ਅਤੇ ' ਜਰੂਰ ਹੀ z ਬਰਾਬਰ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਨਹੀਂ ਤਾਂ ਚਾਹੇ ਕੋਈ ਤੇਜ਼ ਗਤੀਸ਼ੀਲ 1 m ਗੇਂਦ ਕਿਸੇ 1 m ਚੱਕਰਾਕਾਰ ਸੁਰਾਖ ਵਿੱਚ ਫਿੱਟ ਹੋ ਸਕਦੀ ਹੈ ਕਿ ਨਹੀਂ, ਔਬਜ਼ਰਵਰ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਪਹਿਲਾ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤ ਬਿਆਨ ਕਰਦਾ ਹੈ ਕਿ ਸਾਰੀਆਂ ਇਨ੍ਰਸ਼ੀਅਲ ਫ੍ਰੇਮਾਂ ਇੱਕ-ਸਮਾਨ ਹੁੰਦੀਆਂ ਹਨ, ਅਤੇ ਟ੍ਰਾਂਸਵਰਸ ਫੈਲਾਓ/ਸੁੰਗੜਨ ਇਸ ਨਿਯਮ ਦੀ ਉਲੰਘਣਾ ਕਰਦੀ ਹੋ ਸਕਦੀ ਹੈ।[34]: 27–28
- ਡਰਾਇੰਗ ਤੋਂ, w = a + b ਅਤੇ x = r + s।
- ਸਮਰੂਪ ਤਿਕੋਣਾਂ ਵਰਤਦੇ ਹੋਏ ਪਿਛਲੇ ਨਤੀਜਿਆਂ ਤੋਂ, ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ s/a = b/r = v/c = β।
- ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਸਮਾਂ ਦੇਰੀ ਕਾਰਨ, a = γ'।
- ਸਮੀਕਰਨ (4) ਨੂੰ s/a = β ਵਿੱਚ ਭਰਦੇ ਹੋਏ s = 'β ਮਿਲਦਾ ਹੈ।
- ਲੰਬਾਈ ਸੁੰਗੜਨਾ ਅਤੇ ਸਮਰੂਪ ਤਿਕੋਣਾਂ ਸਾਨੂੰ r = ' ਅਤੇ b = βr = βγ' ਦਿੰਦੇ ਹਨ।
- s, a, r ਅਤੇ b ਵਾਸਤੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਸਟੈਪ 2 ਵਿੱਚ ਭਰਨ ਤੇ ਤੁਰੰਤ ਹੀ ਇਹ ਮਿਲਦਾ ਹੈ;
ਉੱਪਰਲੀਆਂ ਇਕੁਏਸ਼ਨਾਂ ਉਲਟ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਦੀਆਂ t ਅਤੇ x ਸਮੀਕਰਨਾਂ ਵਾਸਤੇ ਬਦਲਵੀਆਂ ਸਮੀਕਰਨਾਂ ਹਨ, ਜਿਵੇਂ ਕਿ ct ਨੂੰ w ਲਈ, ' ਨੂੰ ' ਲਈ, ਅਤੇ v/c ਨੂੰ β ਵਾਸਤੇ ਭਰਕੇ ਦੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਉਲਟ ਰੂਪਾਂਤ੍ਰਨ ਤੋਂ, ਫਾਰਵਰਡ ਰੂਪਾਂਤ੍ਰਨ ਨੂੰ ' ਅਤੇ ' ਵਾਸਤੇ ਵਿਓੰਤਬੰਦ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ’‘ਜਾਣ-ਪਛਾਣ ਵੱਲ ਪਰਤੋ’’
ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਦੀ ਰੇਖਿਕਤਾ
[ਸੋਧੋ]ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਦੀ ਇੱਕ ਗਣਿਤਿਕ ਵਿਸ਼ੇਸ਼ਤਾ ਰੱਖਦੀਆਂ ਹਨ ਜਿਸ ਨੂੰ ਲੀਨੀਅਰਟੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਕਿਉਂਕਿ x' ਅਤੇ t' ਨੂੰ x ਅਤੇ t ਦੇ ਇੱਕ ਰੇਖਿਕ ਮੇਲ ਦੇ ਤੌਰ ਤੇ, ਬਗੈਰ ਉੱਚ ਪਾਵਰਾਂ ਨੂੰ ਸ਼ਾਮਿਲ ਕੀਤੇ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਰੇਖਿਕਤਾ, ਸਪੇਸਟਾਈਮ ਦੀ ਇੱਕ ਬੁਨਿਆਦੀ ਵਿਸ਼ੇਸ਼ਤਾ ਪਰਵਰਤਿਤ ਕਰਦੀ ਹੈ ਜੋ ਅਸੀਂ ਮੌਨ ਰੂਪ ਵਿੱਚ (ਚੁੱਪਚਾਪ) ਓਦੋਂ ਮੰਨ ਲਿਆ ਸੀ ਜਦੋਂ ਡੈਰੀਵੇਸ਼ਨ ਵਿਓਂਤਬੰਦ ਕਰ ਰਹੇ ਸੀ, ਕਿ ਰੈਫ੍ਰੈਂਸ ਇਨ੍ਰਸ਼ੀਅਲ ਫ੍ਰੇਮਾਂ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਲੋਕੇਸ਼ਨ ਅਤੇ ਸਮੇਂ ਤੋਂ ਸੁਤੰਤਰ ਹੁੰਦੀਆਂ ਹਨ। ਗਰੈਵਿਟੀ ਦੀ ਗੈਰ-ਹਾਜ਼ਰੀ ਵਿੱਚ, ਸਪੇਸਟਾਈਮ ਸਭ ਥਾਂ ਇੱਕੋ ਜਿਹਾ ਲਗਦਾ ਹੈ।[32]: 67 ਸਾਰੇ ਇਨ੍ਰਸ਼ੀਅਲ ਔਬਜ਼ਰਵਰ ਗਤੀ ਦੇ ਪ੍ਰਵੇਗਿਤ ਹੋਣ ਅਤੇ ਪ੍ਰਵੇਗਿਤ ਨਾ ਹੋਣ ਪਿੱਛੇ ਦੇ ਕਾਰਨ ਉੱਤੇ ਸਹਿਮਤ ਰਹਿਣਗੇ।[34]: 72–73 ਕੋਈ ਵੀ ਔਬਜ਼ਰਵਰ ਸਪੇਸ ਅਤੇ ਸਮੇਂ ਦੇ ਅਪਣੇ ਨਾਪ ਵਰਤ ਸਕਦਾ ਹੈ, ਪਰ ਇਸ ਬਾਰੇ ਕੁੱਝ ਵੀ ਸ਼ੁੱਧ ਨਹੀਂ ਹੁੰਦਾ। ਕੋਈ ਹੋਰ ਔਬਜ਼ਰਵਰ ਦੀਆਂ ਪ੍ਰੰਪ੍ਰਾਵਾਂ ਵੀ ਇਵੇਂ ਹੀ ਕਰਨਗੀਆਂ।[17]: 190
ਲੀਨੀਅਰਟੀ ਦਾ ਇੱਕ ਨਤੀਜਾ ਇਹ ਹੈ ਕਿ ਜੇਕਰ ਦੋ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ (ਰੂਪਾਂਤ੍ਰਨ) ਲੜੀਵਾਰ (ਕ੍ਰਮਵਾਰ) ਲਾਗੂ (ਅਪਲਾਈ) ਕੀਤੀਆਂ ਜਾਣ, ਤਾਂ ਨਤੀਜਾ ਵੀ ਇੱਕ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਹੀ ਹੁੰਦਾ ਹੈ।
ਉਦਾਹਰਨ: ਟੇਰੈਂਸ ਸਟੈੱਲਾ ਨੂੰ ਅਪਣੇ ਤੋਂ 0.500 c ਤੇ ਦੂਰ ਜਾਂਦੀ ਨਿਰੀਖਤ ਕਰਦਾ ਹੈ, ਅਤੇ ਉਹ ਅਪਣੇ ਨਾਪਾਂ ਨਾਲ ਸਟੈੱਲਾ ਦੇ ਨਾਪਾਂ ਨੂੰ ਸਬੰਧਤ ਕਰਨ ਲਈ β = 0.500 ਸਮੇਤ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਵਰਤ ਸਕਦਾ ਹੈ। ਸਟੈੱਲਾ, ਅਪਣੀ ਫ੍ਰੇਮ ਅੰਦਰ, ਉਰਸੁਲਾ ਨੂੰ ਅਪਣੇ ਤੋਂ 0.250 c ਉੱਤੇ ਦੂਰ ਜਾਂਦੀ ਨਿਰੀਖਤ ਕਰਦੀ ਹੈ, ਅਤੇ ਉਹ ਅਪਣੇ ਨਾਪਾਂ ਨਾਲ ਉਰਸੁਲਾ ਦੇ ਨਾਪਾਂ ਨੂੰ ਸਬੰਧਤ ਕਰਨ ਵਾਸਤੇ β = 0.250 ਸਮੇਤ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਵਰਤ ਸਕਦੀ ਹੈ। ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਦੀ ਰੇਖਿਕਤਾ (ਲੀਨੀਅਰਟੀ) ਅਤੇ ਵਿਲੌਸਟੀਆਂ ਦੀ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਬਣਾਵਟ ਕਰਕੇ, ਟੇਰੈਂਸ ਅਪਣੇ ਨਾਪਾਂ ਨਾਲ ਉਰਸੁਲਾ ਦੇ ਨਾਪਾਂ ਨੂੰ ਸਬੰਧਤ ਕਰਨ ਵਾਸਤੇ β = 0.666 ਸਮੇਤ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਨੂੰ ਵਰਤ ਸਕਦਾ ਹੈ।
ਡੌਪਲਰ ਪ੍ਰਭਾਵ
[ਸੋਧੋ]
’‘‘‘‘ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ’’’’’
ਡੌਪਲਰ ਪ੍ਰਭਾਵ ਸਾਪੇਖਿਕ ਗਤੀ ਅੰਦਰ ਕਿਸੇ ਰੀਸੀਵਰ ਅਤੇ ਸੋਰਸ (ਸੋਮੇ) ਵਾਸਤੇ ਕਿਸੇ ਤਰੰਗ ਦੀ ਵੇਵਲੈਂਥ (ਤਰੰਗਲੰਬਾਈ) ਜਾਂ ਫ੍ਰੀਕੁਐਂਸੀ ਵਿੱਚ ਤਬਦੀਲੀ ਨੂੰ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਸਰਲਤਾ ਵਾਸਤੇ, ਅਸੀਂ ਦੋ ਬੁਨਿਆਦੀ ਕਥਾ-ਦ੍ਰਿਸ਼ਾਂ ਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ: (1) ਸੋਮੇ ਅਤੇ/ਜਾਂ ਰੀਸੀਵਰ ਦੀਆਂ ਗਤੀਆਂ ਇੱਨਬਿੰਨ ਉਹਨਾਂ ਨੂੰ ਜੋੜਨ ਵਾਲੀ ਰੇਖਾ ਦੇ ਨਾਲ ਨਾਲ ਹਨ (ਲੌਂਗੀਟਿਊਡਨਲ ਡੌਪਲਰ ਪ੍ਰਭਾਵ), ਅਤੇ (2) ਗਤੀਆਂ ਕਹੀ ਗਈ ਰੇਖਾ ਤੋਂ ਸਮਕੋਣ ਤੇ ਹਨ (ਟ੍ਰਾਂਸਵਰਸ ਡੌਪਲਰ ਪ੍ਰਭਾਵ)। ਅਸੀਂ ਉਹਨਾਂ ਕਥਾ-ਵਰਤਾਰਿਆਂ ਨੂੰ ਅੱਖੋ-ਓਹਲੇ ਕਰ ਰਹੇ ਹਾਂ ਜਿੱਥੇ ਇਹ ਅੱਧ-ਵਿਚਕਾਰ ਜਿਹੇ ਦੇ ਕੋਣਾਂ ਦੇ ਨਾਲ ਨਾਲ ਗਤੀ ਕਰਦੇ ਹਨ।
ਲੌਂਗੀਟਿਊਡਨਲ ਡੌਪਲਰ ਪ੍ਰਭਾਵ
[ਸੋਧੋ]ਕਲਾਸੀਕਲ ਡੌਪਲਰ ਪ੍ਰਭਾਵ ਵਿਸ਼ਲੇਸ਼ਣ ਉਹਨਾਂ ਤਰੰਗਾਂ ਨਾਲ ਵਾਸਤਾ ਰੱਖਦਾ ਹੈ ਜੋ ਕਿਸੇ ਮਾਧਿਅਨ ਅੰਦਰ ਸੰਚਾਰਿਤ ਹੁੰਦੀਆਂ ਹਨ, ਜਿਵੇਂ ਅਵਾਜ਼ ਤਰੰਗਾਂ ਜਾਂ ਪਾਣੀ ਦੀਆਂ ਛੱਲਾਂ, ਅਤੇ ਜੋ ਅਜਿਹੇ ਸੋਮਿਆਂ ਅਤੇ ਰੀਸੀਵਰਾਂ ਦਰਮਿਆਨ ਸੰਚਾਰਿਤ ਹੁੰਦੀਆਂ ਹਨ ਜੋ ਇੱਕ ਦੂਜੇ ਤੋਂ ਦੂਰ ਜਾਂ ਨੇੜੇ ਵੱਲ ਗਤੀ ਕਰ ਰਹੇ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੀਆਂ ਤਰੰਗਾਂ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਇਸ ਗੱਲ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਕਿ ਸੋਮਾ, ਰੀਸੀਵਰ ਜਾਂ ਦੋਵੇਂ ਹੀ ਮਾਧਿਅਮ ਪ੍ਰਤਿ ਸਾਪੇਖਿਕ ਗਤੀ ਕਰ ਰਹੇ ਹਨ ਜਾਂ ਨਹੀਂ। ਇਹ ਵਰਤਾਰਾ-ਦ੍ਰਿਸ਼ ਦਿੱਤਾ ਹੋਣ ਤੇ ਕਿ ਰੀਸਵਰ ਮਾਧਿਅਮ ਪ੍ਰਤਿ ਠਹਿਰੀ ਹੋਈ (ਸਟੇਸ਼ਨਰੀ) ਅਵਸਥਾ ਵਿੱਚ ਹੈ, ਅਤੇ ਸੋਮਾ ਰੀਸੀਵਰ ਤੋਂ βs ਦੇ ਵਿਲੌਸਟੀ ਪੈਰਾਮੀਟਰ ਲਈ vs ਦੀ ਕਿਸੇ ਸਪੀਡ ਉੱਤੇ ਸਿੱਧਾ ਹੀ ਦੂਰ ਜਾ ਰਿਹਾ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਤਰੰਗਲੰਬਾਈ ਵਧ ਜਾਂਦੀ ਹੈ, ਅਤੇ ਔਬਜ਼ਰਵਰ ਫ੍ਰੀਕੁਐਂਸੀ f ਇਸ ਦੁਆਰਾ ਮਿਲਦੀ ਹੈ;
ਦੂਜੇ ਪਾਸੇ, ਅਜਿਹਾ ਸੀਨਾਰੀਓ ਦਿੱਤਾ ਹੋਣ ਤੇ ਜਿੱਥੇ ਸੋਰਸ ਸਟੇਸ਼ਨਰੀ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਰੀਸੀਵਰ ਸੋਰਸ ਤੋਂ βr ਦੇ ਵਿਲੌਸਟੀ ਪੈਰਾਮੀਟਰ ਲਈ vr ਦੀ ਕਿਸੇ ਸਪੀਡ ਉੱਤੇ ਦੂਰ ਜਾ ਰਿਹਾ ਹੋਵੇ, ਤਰੰਗਲੰਬਾਈ ਨਹੀਂ ਬਦਲਦੀ, ਸਗੋਂ ਰੀਸੀਵਰ ਪ੍ਰਤਿ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਤਰੰਗਾਂ ਦੀ ਟ੍ਰਾਂਸਮਿਸ਼ਨ ਵਿਲੌਸਟੀ ਘਟ ਜਾਂਦੀ ਹੈ, ਅਤੇ ਨਿਰੀਖਤ ਫ੍ਰੀਕੁਐਂਸੀ f ਇਸ ਦੁਆਰਾ ਮਿਲਦੀ ਹੈ;
ਪ੍ਰਕਾਸ਼, ਅਵਾਜ਼ ਜਾਂ ਪਾਣੀ ਦੀਆਂ ਛੱਲਾਂ ਤੋਂ ਉਲਟ, ਕਿਸੇ ਮਾਧਿਅਮ ਰਾਹੀਂ ਨਹੀਂ ਸੰਚਾਰਿਤ ਹੁੰਦਾ, ਅਤੇ ਰੀਸੀਵਰ ਤੋਂ ਦੂਰ ਜਾ ਰਹੇ ਕਿਸੇ ਸੋਮੇ ਜਾਂ ਸੋਮੇ ਤੋਂ ਦੂਰ ਜਾ ਰਹੇ ਕਿਸੇ ਰੀਸੀਵਰ ਦੀ ਗਤੀ ਦਰਮਿਆਨ ਕੋਈ ਫਰਕ ਨਹੀਂ ਹੁੰਦਾ। ਚਿੱਤਰ. 3‑6 ਇੱਕ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਸਪੇਸਟਾਈਮ ਡਾਇਗ੍ਰਾਮ ਦਿਖਾਉਂਦਾ ਹੈ ਜੋ ਰੀਸੀਵਰ ਤੋਂ ਕਿਸੇ ਸੋਮੇ ਤੋਂ β ਵਿਲੌਸਟੀ ਪੈਰਾਮੀਟਰ ਨਾਲ ਦੂਰ ਹੁੰਦਾ ਦਿਖਾ ਰਿਹਾ ਹੈ, ਤਾਂ ਜੋ ਸੋਮੇ ਅਤੇ ਰੀਸੀਵਰ ਦਰਮਿਆਨ ਸਮੇਂ w ਉੱਤੇ ਨਿਖੇੜ (ਸੈਪ੍ਰੇਸ਼ਨ) βw ਹੈ। ਸਮਾਂ ਦੇਰੀ ਕਾਰਨ, w = γw' ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ ਹਰੀ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਦੀ ਸਲੋਪ -1 ਹੁੰਦੀ ਹੈ, ਇਸਲਈ T = w+βw = γw'(1+β) ਹੁੰਦਾ ਹੈ। ਇਸਤਰਾਂ, ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਡੌਪਲਰ ਪ੍ਰਭਾਵ ਇਸਤਰਾਂ ਮਿਲਦਾ ਹੈ[32]: 58–59
ਟ੍ਰਾਂਸਵਰਸ ਡੌਪਲਰ ਪ੍ਰਭਾਵ
[ਸੋਧੋ]ਮੰਨ ਲਓ ਕਿ ਇੱਕ ਸੋਰਸ, ਜੋ ਕਿਸੇ ਸਿੱਧੀ ਰੇਖਾ ਵਿੱਚ ਗਤੀਸ਼ੀਲ ਹੁੰਦਾ ਹੈ, ਰੀਸੀਵਰ ਪ੍ਰਤਿ ਨਜ਼ਦੀਕਾਤਮਿਕ ਬਿੰਦੂ ਉੱਤੇ ਹੈ। ਇਹ ਲੱਗੇਗਾ ਕਿ ਕਲਾਸੀਕਲ ਵਿਸ਼ਲੇਸ਼ਣ ਅਨੁਮਾਨ ਲਗਾਉਂਦਾ ਹੈ ਕਿ ਰੀਸੀਵਰ ਕੋਈ ਵੀ ਡੌਪਲਰ ਸ਼ਿਫਟ ਡਿਟੈਕਟ ਨਹੀਂ ਕਰਦਾ। ਵਿਸ਼ਲੇਸ਼ਣ ਵਿੱਚ ਬਾਰੀਕੀਆਂ ਕਰਕੇ, ਇਹ ਉਮੀਦ ਜਰੂਰੀ ਨਹੀਂ ਹੈ ਕਿ ਸਹੀ ਹੋਵੇ। ਹੋਰ ਤਾਂ ਹੋਰ, ਜਦੋਂ ਢੁਕਵੇਂ ਤਰੀਕੇ ਨਾਲ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਟ੍ਰਾਂਸਵਰਸ ਡੌਪਲਰ ਸ਼ਿਫਟ ਅਜਿਹਾ ਇੱਕ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਅਸਰ ਹੁੰਦਾ ਹੈ ਜਿਸਦਾ ਕੋਈ ਵੀ ਕਲਾਸੀਕਲ ਤੁੱਲ (ਐਨਾਲੌਗ) ਨਹੀਂ ਹੈ। ਬਾਰੀਕੀਆਂ ਇਹ ਹਨ:[34]: 94–96
- ਚਿੱਤਰ. 3-7a. ਜੇਕਰ ਕੋਈ ਸੋਮਾ, ਜੋ ਇੱਕ ਸਿੱਧੀ ਰੇਖਾ ਵਿੱਚ ਗਤੀਸ਼ੀਲ ਹੋਵੇ, ਰੀਸੀਵਰ ਦੇ ਦੇਖਣ ਦੇ ਖੇਤਰ ਨੂੰ ਪਾਰ ਕਰ ਰਿਹਾ ਹੋਵੇ, ਤਾਂ ਫ੍ਰੀਕੁਐਂਸੀ ਨਾਪ ਕੀ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਸੋਮਾ ਰੀਸੀਵਰ ਪ੍ਰਤਿ ਨਜ਼ਦੀਕਾਤਮਿਕ ਪਹੁੰਚ ਉੱਤੇ ਹੋਵੇ?
- ਚਿੱਤਰ. 3-7b. ਜੇਕਰ ਕੋਈ ਸੋਮਾ ਇੱਕ ਸਿੱਧੀ ਰੇਖਾ ਵਿੱਚ ਗਤੀਸ਼ੀਲ ਹੋਵੇ, ਤਾਂ ਉਦੋਂ ਫ੍ਰੀਕੁਐਂਸੀ ਨਾਪ ਕੀ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਰੀਸੀਵਰ, ਸੋਮੇ ਨੂੰ ਅਪਣੇ ਨਜ਼ਕੀਤਾਮਿਕ ਬਿੰਦੂ ਦੇ ਉੱਤੇ ਹੁੰਦਾ ਦੇਖਦਾ ਹੈ?
- ਚਿੱਤਰ. 3-7c. ਜੇਕਰ ਰੀਸੀਵਰ ਸੋਮੇ ਦੇ ਦੁਆਲ਼ੇ ਕਿਸੇ ਚੱਕਰ ਵਿੱਚ ਗਤੀਸ਼ੀਲ ਹੋ ਰਿਹਾ ਹੋਵੇ, ਤਾਂ ਰੀਸੀਵਰ ਦੁਆਰਾ ਨਾਪੀ ਗਈ ਫ੍ਰੀਕੁਐਂਸੀ ਕੀ ਹੁੰਦੀ ਹੈ?
- ਚਿੱਤਰ. 3-7d. ਰੀਸੀਵਰ ਦੁਆਲੇ ਕਿਸੇ ਚੱਕਰ ਵਿੱਚ ਗਤੀਸ਼ੀਲ ਹੋ ਰਹੇ ਕਿਸੇ ਸੋਮੇ ਲਈ, ਰੀਸੀਵਰ ਦੁਆਰਾ ਨਾਪੀ ਜਾਂਦੀ ਫ੍ਰੀਕੁਐਂਸੀ ਕੀ ਹੁੰਦੀ ਹੈ?
ਸੀਨਾਰੀਓ (a) ਵਿੱਚ, ਜਦੋਂ ਸੋਮਾ ਰੀਸੀਵਰ ਪ੍ਰਤਿ ਨਜ਼ਦੀਕਾਤਮਿਕ ਬਿੰਦੂ ਉੱਤੇ ਹੁੰਦਾ ਹੈ, ਰੀਸੀਵਰ ਨੂੰ ਵੱਜਣ ਵਾਲੀ ਰੋਸ਼ਨੀ ਦਰਅਸਲ ਇੱਕ ਅਜਿਹੀ ਦਿਸ਼ਾ ਤੋਂ ਆਉਂਦੀ ਹੁੰਦੀ ਹੈ ਜਿੱਥੇ ਸੋਮਾ ਕੁੱਝ ਦੇਰ ਪਹਿਲਾਂ ਰਿਹਾ ਸੀ, ਅਤੇ ਇਸਦਾ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਲੌਂਗੀਟਿਊਡਨਲ ਕੰਪੋਨੈਂਟ ਹੁੰਦਾ ਹੈ, ਜੋ ਰੀਸੀਵਰ ਦੀ ਫ੍ਰੇਮ ਤੋਂ ਵਿਸ਼ਲੇਸ਼ਣ ਨੂੰ ਚਲਾਕੀ ਭਰਿਆ ਬਣਾ ਦਿੰਦਾ ਹੈ। S’ ਤੋਂ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨਾ ਅਸਾਨ ਹੁੰਦਾ ਹੈ, ਜੋ ਸੋਮੇ ਦੀ ਫ੍ਰੇਮ ਹੁੰਦੀ ਹੈ। ਨਜ਼ਦੀਕਾਤਮਿਕ ਪਹੁੰਚ ਦਾ ਬਿੰਦੂ ਫ੍ਰੇਮ ਤੋਂ ਸੁਤੰਤਰ ਹੁੰਦਾ ਹੈ ਅਤੇ ਓਹ ਪਲ ਪ੍ਰਸਤੁਤ ਕਰਦਾ ਹੈ ਜਿੱਥੇ ਦੂਰੀ ਬਨਾਮ ਸਮੇਂ ਵਿੱਚ ਕੋਈ ਤਬਦੀਲੀ ਨਹੀਂ ਹੁੰਦੀ (ਯਾਨਿ ਕਿ, dr/dt = 0 ਹੁੰਦਾ ਹੈ ਜਿੱਥੇ r ਰੀਸੀਵਰ ਅਤੇ ਸੋਮੇ ਦਰਮਿਆਨ ਦੂਰੀ ਹੁੰਦੀ ਹੈ) ਅਤੇ ਇਸਤਰਾਂ ਕੋਈ ਲੌਂਗੀਟਿਊਡਨਲ ਡੌਪਲਰ ਸ਼ਿਫਟ ਨਹੀਂ ਹੁੰਦੀ। ਸੋਮਾ ਰੀਸੀਵਰ ਨੂੰ ਫ੍ਰੀਕੁਐਂਸੀ f' ਵਾਲੀ ਰੋਸ਼ਨੀ ਰਾਹੀਂ ਚਮਕਾਇਆ ਜਾਂਦਾ ਨਿਰੀਖਤ ਕਰਦਾ ਹੈ, ਪਰ ਰੀਸੀਵਰ ਦੇ ਕਲੌਕ ਨੂੰ ਇੱਕ ਸਮਾਂ-ਦੇਰੀ ਕਰਦਾ ਵੀ ਨਿਰੀਖਤ ਕਰਦਾ ਹੈ। ਫ੍ਰੇਮ S ਵਿੱਚ, ਇਸਤਰਾਂ ਰੀਸੀਵਰ ਇਸ ਫ੍ਰੀਕੁਐਂਸੀ ਵਾਲੀ ਬਲੀਊਸ਼ਿਫਟਡ ਰੋਸ਼ਨੀ ਰਾਹੀਂ ਚਮਕਾਈ ਜਾਂਦੀ ਹੈ;
ਸੀਨਾਰੀਓ (b) S ਤੋਂ ਸਭ ਤੋਂ ਬੈਸਟ (ਚੰਗਾ) ਵਿਸ਼ਲੇਸ਼ਣਬੱਧ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜੋ ਰੀਸੀਵਰ ਦੀ ਫ੍ਰੇਮ ਹੁੰਦੀ ਹੈ। ਚਿੱਤਰ-ਦ੍ਰਿਸ਼ ਰੀਸੀਵਰ ਨੂੰ ਉਦੋਂ ਰੋਸ਼ਨੀ ਰਾਹੀਂ ਚਮਕਾਇਆ ਜਾਂਦਾ ਦਿਖਾਉਂਦਾ ਹੈ ਜਦੋਂ ਸੋਮਾ ਰੀਸੀਵਰ ਪ੍ਰਤਿ ਨਜ਼ਦੀਕਾਤਮਿਕ ਬਿੰਦੂ ਉੱਤੇ ਸੀ, ਭਾਵੇਂ ਸੋਮਾ ਹੁਣ ਗਤੀ ਕਰ ਗਿਆ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ ਸੋਮੇ ਦਾ ਕਲੌਕ ਸਮਾਂ ਦੇਰੀ ਕਰਦਾ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਕਿਉਂਕਿ dr/dt ਇਸ ਬਿੰਦੂ ਉੱਤੇ 0 ਹੁੰਦੀ ਸੀ, ਇਸਲਈ ਸੋਮੇ ਤੋਂ ਇਸ ਨਜ਼ਦੀਕਾਤਮਿਕ ਬਿੰਦੂ ਤੋਂ ਨਿਕਾਸ ਕੀਤਾ ਗਿਆ ਪ੍ਰਕਾਸ਼ ਇਸ ਹੇਠਾਂ ਲਿਖੀ ਫ੍ਰੀਕੁਐਂਸੀ ਨਾਲ ਰੈੱਡਸ਼ਿਫਟਡ ਹੁੰਦਾ ਹੈ;
ਸੀਨਾਰੀਓ (c) ਅਤੇ (d) ਨੂੰ ਸਰਲ ਸਮਾੰ ਦੇਰੀ ਤਰਕਾਂ ਰਾਹੀਂ ਵਿਸ਼ਲੇਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। (c) ਵਿੱਚ, ਰੀਸੀਵਰ ਪ੍ਰਕਾਸ਼ ਨੂੰ ਸੋਮੇ ਤੋਂ ਦੇ ਇੱਕ ਫੈਕਟਰ ਰਾਹੀਂ ਬਲੀਊਸ਼ਿਫਟਡ ਹੋਇਆ ਵਿਆ (ਹੋਇਆ) ਨਿਰੀਖਤ ਕਰਦਾ ਹੈ, ਅਤੇ (d) ਵਿੱਚ, ਪ੍ਰਕਾਸ਼ ਰੈਡਸ਼ਿਫਟਡ ਹੁੰਦਾ ਹੈ। ਇੱਕੋ ਇੱਕ ਦਿਸਦੀ ਕਠਿਨਾਈ ਇਹ ਹੈ ਕਿ ਚੱਕਰ ਲਗਾ ਰਹੀਆਂ ਚੀਜ਼ਾਂ ਪ੍ਰਵੇਗਿਤ ਗਤੀ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ। ਫੇਰ ਵੀ, ਜੇਕਰ ਕੋਈ ਇਨ੍ਰਸ਼ੀਅਲ ਔਬਜ਼ਰਵਰ ਕਿਸੇ ਪ੍ਰਵੇਗਿਤ ਕਲੌਕ ਉੱਤੇ ਨਜ਼ਰ ਪਾਉਂਦਾ ਹੈ, ਤਾਂ ਸਿਰਫ ਕਲੌਕ ਦੀ ਤਤਕਾਲੀਨ ਸਪੀਡ ਹੀ ਸਮਾਂ ਦੇਰੀ ਦਾ ਹਿਸਾਬ ਲਗਾਉਂਦੇ ਵਕਤ ਮਹੱਤਵਪੂਰਨ ਹੁੰਦੀ ਹੈ। (ਇਸਦਾ ਉਲਟ, ਫੇਰ ਵੀ ਸਹੀ ਨਹੀਂ ਹੁੰਦਾ)। [34]: 94–96 ਟ੍ਰਾਂਸਵਰਸ ਡੌਪਲਰ ਖਿਸਕਾਅ (ਸ਼ਿਫਟ) ਦੀਆਂ ਜਿਆਦਾਤਰ ਰਿਪੋਰਟਾਂ ਇੱਕ ਰੈੱਡਸ਼ਿਫਟ ਦੇ ਰੂਪ ਵਿੱਚ ਅਸਰ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦੀਆੰ ਹਨ ਅਤੇ ਅਸਰ ਨੂੰ ਸੀਨਾਰੀਓ (b) ਜਾਂ (d) ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਵਿਸ਼ਲੇਸ਼ਿਤ ਕਰਦੀਆਂ ਹਨ।[note 7]
ਐਨਰਜੀ ਅਤੇ ਮੋਮੈਂਟਮ
[ਸੋਧੋ]
’‘‘‘‘ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ’’’’’
ਮੋਮੈਂਟਮ ਨੂੰ ਚਾਰ ਅਯਾਮਾਂ ਤੱਕ ਵਧਾਉਣਾ
[ਸੋਧੋ]ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਵਿੱਚ, ਕਿਸੇ ਕਣ ਦੀ ਗਤੀ ਦੀ ਅਵਸਥਾ ਨੂੰ ਇਸਦੇ ਪੁੰਜ ਅਤੇ ਇਸਦੀ ਵਿਲੌਸਿਟੀ ਦੁਆਰਾ ਲੱਛਣਬੱਧ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਲੀਨੀਅਰ ਮੋਮੈਂਟਮ, ਜੋ ਕਿਸੇ ਕਣ ਦੇ ਪੁੰਜ ਅਤੇ ਵਿਲੌਸਿਟੀ ਦਾ ਗੁਣਨਫਲ ਹੁੰਦਾ ਹੈ, ਇੱਕ ਵੈਕਟਰ ਮਾਤਰਾ ਹੁੰਦੀ ਹੈ, ਜੋ ਓਹੀ ਦਿਸ਼ਾ ਰੱਖਦੀ ਹੈ ਜੋ ਵਿਲੌਸਿਟੀ: p = mv ਰੱਖਦੀ ਹੈ। ਇਹ ਇੱਕ ਸੁਰੱਖਿਅਤ ਮਾਤਰਾ ਹੁੰਦੀ ਹੇ, ਜਿਸਦਾ ਅਰਥ ਹੈ ਕਿ ਜੇਕਰ ਕੋਈ ਬੰਦ ਸਿਸਟਮ ਬਾਹਰੀ ਫੋਰਸਾਂ ਦੁਆਰਾ ਪ੍ਰਭਾਵਿਤ ਨਹੀਂ ਹੁੰਦਾ, ਤਾਂ ਇਸਦਾ ਕੁੱਲ ਲੀਨੀਅਰ ਮੋਮੈਂਟਮ ਬਦਲ ਨਹੀਂ ਸਕਦਾ।
ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਮਕੈਨਿਕਸ ਅੰਦਰ, ਮੋਮੈਂਟਮ ਵੈਕਟਰ ਨੂੰ ਚਾਰ ਡਾਇਮੈਨਸ਼ਨਾਂਤੱਕ ਵਧਾਇਆ ਜਾਂਦਾ ਹੈ। ਮੋਮੈਂਟਮ ਵੈਕਟਰ ਵਿੱਚ ਇੱਕ ਟਾਈਮ ਕੰਪੋਨੈਂਟ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ ਜੋ ਸਪੇਸਟਾਈਮ ਮੋਮੈਂਟਮ ਵੈਕਟਰ ਨੂੰ ਸਪੇਸਟਾਈਮ ਪੁਜੀਸ਼ਨ ਵੈਕਟਰ (x, t) ਦੀ ਤਰਾਂ ਰੂਪਾਂਤ੍ਰਿਤ ਹੋਣ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ। ਸਪੇਸਟਾਈਮ ਮੋਮੈਂਟਮ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਨੂੰ ਫਰੋਲਣ ਵਾਸਤੇ, ਅਸੀਂ ਚਿੱਤਰ. 3‑8a ਵਿੱਚ, ਇਹ ਜਾਂਚਣ ਤੋਂ ਸ਼ੁਰੂ ਕਰਦੇ ਹਾਂ ਕਿ ਕੋਈ ਕਣ ਰੈਸਟ ਉੱਤੇ ਪਿਆ ਕਿਵੇਂ ਦਾ ਦਿਸਦਾ ਹੈ। ਰੈਸਟ ਫ੍ਰੇਮ ਅੰਦਰ, ਮੋਮੈਂਟਮ ਦਾ ਸਪੈਸ਼ੀਅਲ ਕੰਪੋਨੈਂਟ 0 ਰਹਿੰਦਾ ਹੈ, ਯਾਨਿ ਕਿ, p = 0, ਪਰ ਟਾਈਮ ਕੰਪੋਨੈਂਟ mc ਸਮਾਨ ਹੁੰਦਾ ਹੈ।
ਇਸ ਵੈਕਟਰ ਦੇ ਰੂਪਾਂਤ੍ਰਿਤ ਪੁਰਜਿਆਂ ਨੂੰ ਅਸੀਂ ਗਤੀਸ਼ੀਲ ਫ੍ਰੇਮ ਅੰਦਰ, ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਵਰਤਦੇ ਹੋਏ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ, ਜਾਂ ਅਸੀਂ ਇਸਨੂੰ ਚਿੱਤਰ ਤੋਂ ਸਿੱਧਾ ਹੀ ਪੜ ਸਕਦੇ ਹਾਂ ਕਿਉਂਕਿ ਅਸੀਂ ਜਾਣਦੇ ਹਾੰ ਕਿ (mc)' = γmc ਅਤੇ p' = −βγmc ਹੁੰਦੇ ਹਨ, ਕਿਉਂਕਿ ਲਾਲ ਧੁਰੇ ਗਾਮੇ ਤੋਂ ਪੁਨਰ-ਪੈਮਾਨਾਬੱਧ ਕੀਤੇ ਗਏ ਹਨ। ਚਿੱਤਰ. 3‑8b ਪ੍ਰਸਥਿਤੀ ਨੂੰ ਓਵੇਂ ਦਿਖਾਉਂਦਾ ਹੈ ਜਿਵੇਂ ਇਹ ਗਤੀਸ਼ੀਲ ਫ੍ਰੇਮ ਅੰਦਰੋਂ ਦਿਸਦੀ ਹੈ। ਇਹ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਚਾਰ-ਮੋਮੈਂਟਮ ਦੇ ਸਪੇਸ ਅਤੇ ਸਮਾਂ ਪੁਰਜੇ (ਕੰਪੋਨੈਂਟ) ਅਨੰਤ ਤੱਕ ਚਲੇ ਜਾਂਦੇ ਹਨ ਜਿਵੇਂ ਹੀ ਗਤੀਸ਼ੀਲ ਫ੍ਰੇਮ ਦੀ ਵਿਲੌਸਿਟੀ c ਤੱਕ ਪਹੁੰਚਦੀ ਹੈ।[32]: 84–87
ਅਸੀਂ ਇਸ ਜਾਣਕਾਰੀ ਦੀ ਵਰਤੋਂ ਚਾਰ-ਮੋਮੈਂਟਮ ਵਾਸਤੇ ਇੱਕ ਸਮੀਕਰਨ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਜਲਦੀ ਹੀ ਕਰਾਂਗੇ।
ਪ੍ਰਕਾਸ਼ ਦਾ ਮੋਮੈਂਟਮ
[ਸੋਧੋ]ਪ੍ਰਕਾਸ਼ੀ ਕਣ, ਜਾਂ ਫੋਟੌਨ, c ਦੀ ਸਪੀਡ ਉੱਤੇ ਯਾਤਰਾ ਕਰਦੇ ਹਨ, ਜੋ ਰੋਸ਼ਨੀ ਦੀ ਸਪੀਡ ਦੇ ਨਾਮ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਸਥਿਰਾਂਕ ਹੈ। ਇਹ ਕਥਨ ਕੋਈ ਟਾਓਟੌਲੌਜੀ (ਪੁਨਰ-ਦੋਹਰਾਅ) ਨਹੀਂ ਹੈ, ਕਿਉਂਕਿ ਰਿਲੇਟੀਵਿਟੀ ਦੀਆਂ ਕਈ ਅਜੋਕੀਆਂ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀਆਂ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਥਿਰ ਸਪੀਡ ਦੇ ਇੱਕ ਸਵੈ-ਸਿੱਧ-ਸਿਧਾਂਤ ਦੇ ਤੌਰ ਤੇ ਹੋਣ ਨਾਲ ਸ਼ੁਰੂ ਨਹੀਂ ਹੁੰਦੀਆਂ। ਇਸਲਈ ਫੋਟੌਨ ਕਿਸੇ ਲਾਈਟ-ਲਾਈਕ ਸੰਸਾਰ ਰੇਖਾ ਦੇ ਨਾਲ ਨਾਲ ਸੰਚਾਰਿਤ ਹੁੰਦੇ ਹਨ, ਢੁਕਵੀਆਂ ਯੂਨਿਟਾਂ ਅੰਦਰ, ਹਰੇਕ ਔਬਜ਼ਰਵਰ ਵਾਸਤੇ ਇੱਕ ਸਮਾਨ ਸਪੇਸ ਅਤੇ ਸਮਾਂ ਪੁਰਜੇ ਰੱਖਦੇ ਹਨ।
ਇਲੈਕਟ੍ਰੋਮੈਗਨਟਿਜ਼ਮ ਦੀ ਮੈਕਸਵੈਲ ਦੀ ਥਿਊਰੀ ਦਾ ਇੱਕ ਨਤੀਜੇ ਇਹ ਹੈ ਕਿ ਪ੍ਰਕਾਸ਼ ਊਰਜਾ ਅਤੇ ਮੋਮੈਂਟਮ ਚੁੱਕ ਕੇ ਰੱਖਦਾ ਹੈ, ਅਤੇ ਇਹਨਾਂ ਦਾ ਅਨੁਪਾਤ (ਰੇਸ਼ੋ) ਸਥਿਰ ਰਹਿੰਦਾ ਹੈ: E/p = c। ਪੁਨਰ-ਵਿਵਸਿਥ ਕਰਦੇ ਹੋਏ, E/c = p, ਅਤੇ ਕਿਉਂਕਿ ਫੋਟੌਨਾਂ ਵਾਸਤੇ, ਸਪੇਸ ਅਤੇ ਸਮਾਂ ਪੁਰਜੇ (ਕੰਪੋਨੈਂਟ) ਬਰਾਬਰ ਹੁੰਦੇ ਹਨ, ਇਸਲਈ, E/c ਜਰੂਰ ਹੀ ਸਪੇਸਟਾਈਮ ਮੋਮੈਂਟਮ ਵੈਕਟਰ ਦੇ ਸਮਾਂ ਪੁਰਜੇ ਨਾਲ ਬਰਾਬਰ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ।
ਫੋਟੌਨ ਭਾਵੇਂ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਉੱਤੇ ਯਾਤਰਾ ਕਰਦੇ ਹਨ, ਫੇਰ ਵੀ ਸੀਮਤ ਮੋਮੈਂਟਮ ਅਤੇ ਊਰਜਾ ਰੱਖਦੇ ਹਨ। ਅਜਿਹਾ ਹੋਣ ਵਾਸਤੇ, γmc ਅੰਦਰਲੀ ਪੁੰਜ-ਰਕਮ ਜਰੂਰ ਹੀ 0 ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ, ਜਿਸਦਾ ਅਰਥ ਹੈ ਕਿ ਫੋਟੌਨ ਪੁੰਜਹੀਣ ਕਣ ਹੁੰਦੇ ਹਨ। ਅਨੰਤ ਗੁਣਾ ਜ਼ੀਰੋ ਇੱਕ ਨਾ-ਪਰਿਭਾਸ਼ਿਤ ਕੀਤੀ ਜਾਣ ਵਾਲੀ ਮਾਤਰਾ ਹੈ, ਪਰ E/c ਚੰਗੀ ਤਰਾਂ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।
ਇਸ ਵਿਸ਼ਲੇਸ਼ਣ ਤੋਂ, ਕਿਸੇ ਫੋਟੌਨ ਦੀ ਊਰਜਾ ਜੇਕਰ ਰੈਸਟ ਫ੍ਰੇਮ ਅੰਦਰ E ਬਰਾਬਰ ਹੋਵੇ, ਤਾਂ ਇਹਕਿਸੇ ਗਤੀਸ਼ੀਲ ਫ੍ਰੇਮ ਅੰਦਰ E' = (1 − β)γE ਹੁੰਦੀ ਹੈ। ਇਹ ਨਤੀਜਾ ਚਿੱਤਰ. 3‑9 ਦੀ ਜਾਂਚ ਤੋਂ ਵਿਓਂਤਬੰਦ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜਾਂ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਲਾਗੂ ਕਰਕੇ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਅਤੇ ਇਹ ਨਤੀਜਾ ਪਹਿਲਾਂ ਦਿੱਤੇ ਗਏ ਡੌਪਲਰ ਪ੍ਰਭਾਵ ਦੇ ਵਿਸ਼ਲੇਸ਼ਣ ਨਾਲ ਅਨੁਕੂਲ ਰਹਿੰਦਾ ਹੈ।[32]: 88
ਪੁੰਜ-ਊਰਜਾ ਸਬੰਧ
[ਸੋਧੋ]ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਮੋਮੈਂਟਮ ਵੈਕਟਰ ਦੇ ਵਿਭਿੰਨ ਕੰਪੋਨੈਂਟਾਂ ਦਰਮਿਆਨ ਅੰਦਰੂਨੀ-ਸਬੰਧਾਂ ਉੱਤੇ ਵਿਚਾਰਾਂ ਨੇ ਆਈਨਸਟਾਈਨ ਨੂੰ ਕਈ ਪ੍ਰਸਿੱਧ ਸਿੱਟਿਆਂ ਵੱਲ ਪ੍ਰੇਰਿਤ ਕੀਤਾ (ਲਿਜਾਂਦਾ)।
- ਘੱਟ ਸਪੀਡ ਹੱਦ ਅੰਦਰ ਜਿਓਂ ਹੀ β = v/c ਜ਼ੀਰੋ ਨਜ਼ਦਇਕ ਪਹੁੰਚਦੀ ਹੈ, 1 ਨਜ਼ਦੀਕ ਪਹੁੰਚਦਾ ਹੈ, ਇਸਤਰਾਂ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਮੋਮੈਂਟਮ βγmc = γmv ਦਾ ਸਪੈਸ਼ੀਅਲ (ਸਥਾਨਿਕ) ਕੰਪੋਨੈਂਟ mv ਨਜ਼ਦਇਕ ਪਹੁੰਚ ਜਾਂਦਾ ਹੈ, ਜੋ ਮੋਮੈਂਟਮ ਲਈ ਕਲਾਸੀਕਲ ਰਕਮ ਹੈ। ਇਸ ਪਹਿਲੂ ਨੂੰ ਅਪਣਾਉਂਦੇ ਹੋਏ, γm ਦੀ ਵਿਆਖਿਆ m ਦੀ ਇੱਕ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਸਰਵਸਧਾਰੀਕਰਨ ਦੇ ਤੌਰ ਤੇ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਆਈਨਸਟਾਈਨ ਨੇ ਪ੍ਰਸਤਾਵ ਰੱਖਿਆ ਸੀ ਕਿ ਕਿਸੇ ਚੀਜ਼ ਦਾ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਪੁੰਜ ਵਿਲੌਸਿਟੀ ਦੇ ਨਾਲ ਫਾਰਮੂਲੇ mrel = γm ਮੁਤਾਬਿਕ ਵਧ ਜਾਂਦਾ ਹੈ।
- ਇਸੇਤਰਾਂ, ਫੋਟੌਨ ਦੇ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਮੋਮੈਂਟਮ ਨਾਲ ਸਮਾਂ ਕੰਪੋਨੈਂਟ ਦੀ ਤੁਲਨਾ ਕਰਦੇ ਹੋਏ, γmc = mrelc = E/c ਹੁੰਦਾ ਹੈ, ਤਾਂ ਜੋ ਆਈਨਸਟਾਈਨ E = mrelc2 ਸਬੰਧ ਉੱਤੇ ਅੱਪੜਿਆ ਸੀ। ਜ਼ੀਰੋ ਵਿਲੌਸਿਟੀ ਦੇ ਮਾਮਲੇ ਨੂੰ ਸਰਲ ਕਰਦੇ ਹੋਏ, ਇਹ ਊਰਜਾ ਅਤੇ ਪੁੰਜ ਨੂੰ ਸਬੰਧਤ ਕਰਨ ਵਾਲੀ ਆਈਨਸਟਾਈਨ ਦੀ ਪ੍ਰਸਿੱਧ ਇਕੁਏਸ਼ਨ ਬਣ ਜਾਂਦੀ ਹੈ।
ਪੁੰਜ ਅਤੇ ਊਰਜਾ ਦਰਮਿਆਨ ਸਬੰਧ ਉੱਤੇ ਨਜ਼ਰ ਪਾਉਣ ਦਾ ਇੱਕ ਹੋਰ ਤਰੀਕਾ ਘੱਟ ਵਿਲੌਸਿਟੀ ਉੱਤੇ γmc2 ਦੇ ਇੱਕ ਸੀਰੀਜ਼ ਫੈਲਾਅ ਤੇ ਵਿਚਾਰ ਕਰਨਾ ਹੈ:
ਦੂਜੀ ਰਕਮ ਕਣ ਦੀ ਕਾਇਨੈਟਿਕ ਐਨਰਜੀ ਵਾਸਤੇ ਸਿਰਫ ਇੱਕ ਦਰਸਾਅ ਹੈ। ਪੁੰਜ ਸੱਚਮੁੱਚ ਹੀ ਊਰਜਾ ਦਾ ਇੱਕ ਹੋਰ ਰੂਪ ਹੁੰਦਾ ਲਗਦਾ ਹੈ।[32]: 90–92 [34]: 129–130, 180
ਆਈਨਸਟਾਈਨ ਦੁਆਰਾ 1905 ਵਿੱਚ ਪੇਸ਼ ਕੀਤਾ ਗਿਆ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਪੁੰਜ ਦਾ ਵਿਚਾਰ, mrel, ਭਾਵੇਂ ਪੂਰੀ ਤਰਾਂ ਗਲੋਬ ਦੇ ਦੁਆਲੇ ਕਣ ਐਕਸਲ੍ਰੇਟਰਾਂ ਵਿੱਚ ਰੋਜ਼ਾਨਾ ਪ੍ਰਮਾਣਿਤ ਹੁੰਦਾ ਹੈ (ਜਾਂ ਸੱਚਮੁੱਚ ਹੀ ਕਿਸੇ ਅਜਿਹੇ ਉਪਕਰਨ ਵਿੱਚ ਜਿਹਨਾਂ ਦੀ ਵਰਤੋਂ ਉੱਚ ਵਿਲੌਸਿਟੀ ਕਣਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ , ਜਿਵੇਂ ਇਲੈਕਟ੍ਰੌਨ ਮਾਈਕ੍ਰੋਸਕੋਪਾਂ,[36] ਪੁਰਾਣੇ ਤਰੀਕੇ ਦੇ ਰੰਗਦਾਰ ਟੈਲੀਵਿਯਨ ਸੈੱਟ ਆਦਿ.), ਫੇਰ ਵੀ ਭੌਤਿਕ ਵਿਗਿਆਨ ਅੰਦਰ ਓਸ ਸਮਝ ਵਿੱਚ ਇੱਕ ਫਲਦਾਇਕ ਧਾਰਨਾ ਹੋਣਾਂ ਸਾਬਤ ਨਹੀਂ ਹੋਇਆ ਹੈ ਕਿ ਇਹ ਇੱਕ ਅਜਿਹੀ ਧਾਰਨਾ ਨਹੀਂ ਹੈ ਜਿਸਨੇ ਹੋਰ ਸਿਧਾਂਤਿਕ ਵਿਕਾਸਾਂ ਲਈ ਕੋਈ ਬੁਨਿਆਦੀ ਅਧਾਰ ਦੇ ਤੌਰ ਤੇ ਭੂਮਿਕਾ ਨਿਭਾਈ ਹੋਵੇ। ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਪੁੰਜ, ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ ਕੋਈ ਰੋਲ ਅਦਾ ਨਹੀਂ ਕਰਦਾ।
ਇਸ ਕਾਰਣ ਕਾਰਨ, ਤੇ ਨਾਲ ਹੀ ਪੀਡਾਗੌਜੀਕਲ (ਵਿੱਦਿਆ-ਵਿਗਿਆਨ ਸਬੰਧੀ) ਕਾਰਣਾਂ ਕਰਕੇ, ਜਿਆਦਾਤਰ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਵਰਤਮਾਨ ਤੌਰ ਤੇ ਪੁੰਜ ਅਤੇ ਊਰਜਾ ਦਰਮਿਆਨ ਸਬੰਧ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਨ ਲੱਗੇ ਇੱਕ ਵੱਖਰੀ ਸ਼ਬਦਾਵਲੀ (ਨਿਯਮਾਵਲੀ) ਵਰਤਦੇ ਹਨ।[37] "ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਪੁੰਜ" ਹੌਲੀ ਹੌਲੀ ਰੱਦ ਹੁੰਦਾ ਜਾਂਦਾ ਸ਼ਬਦ ਹੈ। ਸ਼ਬਦ ਪੁੰਜ ਅਪਣੇ ਆਪ ਹੀ ਰੈਸਟ ਮਾਸ ਜਾਂ ਇਨਵੇਰੀਅੰਟ ਮਾਸ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦਾ ਹੈ, ਅਤੇ ਇਹ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਮੋਮੈਂਟਮ ਵੈਕਟਰ ਦੀ ਇਨਵੇਰੀਅੰਟ ਲੰਬਾਈ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। ਇਸ ਨੂੰ ਇਸ ਫਾਰਮੂਲੇ ਦੇ ਤੌਰ ਤੇ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ,
ਇਹ ਫਾਰਮੂਲਾ, ਪੁੰਜਹੀਣ ਅਤੇ ਪੁੰਜ-ਯੁਕਤ, ਸਾਰੇ ਕਣਾਂ ਤੇ ਲਾਗੂ ਹੁੰਦਾ ਹੈ। ਪੁੰਜਹਿਣ ਫੋਟੌਨਾਂ ਲਈ, ਇਹ ਓਹੀ ਸਬੰਧ ਪੈਦਾ ਕਰਦਾ ਹੈ ਜੋ ਅਸੀਂ ਪਹਿਲਾਂ ਹੀ ਸਥਾਪਿਤ ਕੀਤੇ ਸਨ, E = ±pc.[32]: 90–92
ਚਾਰ-ਮੋਮੈਂਟਮ
[ਸੋਧੋ]ਪੁੰਜ ਅਤੇ ਊਰਜਾ ਦਰਮਿਆਨ ਨਜ਼ਦੀਕੀ ਸਬੰਧਾਂ ਕਰਕੇ, ਚਾਰ-ਮੋਮੈਂਟਮ (ਜਿਸ ਨੂੰ 4‑ਮੋਮੈਂਟਮ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ) ਨੂੰ ਊਰਜਾ-ਮੋਮੈਂਟਮ 4‑ਵੈਕਟਰ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਚਾਰ-ਮੋਮੈਂਟਮ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਨ ਲਈ ਇੱਕ ਵੱਡੀ ਵਰਣਮਾਲਾ ਵਾਲਾ P ਵਰਤਦੇ ਹੋਏ, ਅਤੇ ਸਪੈਸ਼ੀਅਲ ਮੋਮੈਂਟਮ ਨੂੰ ਲੋਅਰਕੇਸ p ਨਾਲ ਦਰਸਾਉਂਦੇ ਹੋਏ, ਚਾਰ-ਮੋਮੈਂਟਮ ਨੂੰ ਇਸਤਰਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ,
- ਜਾਂ ਬਦਲਵੇਂ ਤੌਰ ਤੇ,
- ਇਹ ਪ੍ਰੰਪਰਾ ਵਰਤਦੇ ਹੋਏ ਕਿ [34]: 129–130, 180
ਸੁਰੱਖਿਅਤਾ ਨਿਯਮ
[ਸੋਧੋ]
’‘‘‘‘ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ’’’’’
ਭੌਤਿਕ ਵਿਗਿਆਨ ਅੰਦਰ, ਸੁਰੱਖਿਅਤਾ ਨਿਯਮ ਬਿਆਨ ਕਰਦੇ ਹਨ ਕਿ ਕਿਸੇ ਬੰਦ ਭੌਤਿਕੀ ਸਿਸਟਮ ਦੀਆਂ ਕੁੱਝ ਖਾਸ ਨਾਪਣਯੋਗ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਵਕਤ ਪਾ ਕੇ ਸਿਸਟਮ ਦੇ ਉਤਪੰਨ ਹੋਣ ਨਾਲ ਬਦਲਦੀਆਂ ਨਹੀਂ ਹਨ। 1915 ਵਿੱਚ, ਐੱਮੀ ਨੋਇਥਰ ਨੇ ਖੋਜਿਆ ਕਿ ਹਰੇਕ ਸੁਰੱਖਿਅਤਾ ਨਿਯਮ ਪਿੱਛੇ ਕੁਦਰਤ ਦੀ ਇੱਕ ਬੁਨਿਆਦੀ ਸਮਰੂਪਤਾ ਛਿਪੀ (ਜ਼ਿਮੇਂਵਾਰ) ਹੁੰਦੀ ਹੈ।[38] ਤੱਥ ਕਿ ਭੌਤਿਕੀ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਇਸ ਗੱਲ ਦੀ ਪ੍ਰਵਾਹ ਨਹੀਂ ਕਰਦੀਆਂ ਕਿ ਉਹ ਸਪੇਸ ਵਿੱਚ ਕਿੱਥੇ ਹੁੰਦੀਆਂ (ਸਪੇਸ ਰੂਪਾਂਤ੍ਰਨ ਸਮਰੂਪਤਾ) ਹਨ, ਮੋਮੈਂਟਮ ਦੀ ਸੁਰੱਖਿਅਤਾ ਪੈਦਾ ਕਰਦਾ ਹੈ, ਤੱਥ ਕਿ ਅਜਿਹੀਆਂ ਪ੍ਰੋਸੈੱਸਾਂ (ਪ੍ਰਕ੍ਰਿਆਵਾਂ) ਇਸ ਗੱਲ ਦੀ ਪਰਵਾਹ ਨਹੀਂ ਕਰਦੀਆਂ ਕਿ ਉਹ ਕਦੋਂ ਹੁੰਦੀਆਂ ਹਨ (ਸਮਾਂ ਰੂਪਾਂਤ੍ਰਨ ਸਮਰੂਪਤਾ), ਊਰਜਾ ਦੀ ਸੁਰੱਖਿਅਤਾ ਦਿੰਦਾ ਹੈ, ਅਤੇ ਇਸੇ ਤਰਾਂ ਹੋਰ ਅੱਗੇ। ਇਸ ਹਿੱਸੇ ਵਿੱਚ, ਅਸੀਂ ਪੁੰਜ ਦੀ ਸੁਰੱਖਿਅਤਾ, ਮੋਮੈਂਟਮ ਅਤੇ ਊਰਜਾ ਦਾ ਨਿਊਟੋਨੀਅਨ ਨਜ਼ਰੀਆ ਇੱਕ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਤੋਂ ਜਾਂਚਾਂਗੇ।
ਕੁੱਲ ਮੋਮੈਂਟਮ
[ਸੋਧੋ]ਇਹ ਸਮਝਣ ਲਈ ਕਿ ਕਿਸੇ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਸੰਦ੍ਰਭ ਅੰਦਰ ਮੋਮੈਂਟਮ ਦੀ ਸੁਰੱਖਿਅਤਾ ਦਾ ਨਿਊਟੋਨੀਅਨ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਕਿਵੇਂ ਸੁਧਾਰਨ ਦੀ ਜਰੂਰਤ ਪੈਂਦੀ ਹੈ, ਅਸੀਂ ਕਿਸੇ ਸਿੰਗਲ ਅਯਾਮ ਤੱਕ ਸੀਮਤ ਕੀਤੀਆਂ ਦੋ ਟਕਰਾ ਰਹੀਆਂ ਵਸਤੂਆੰ ਦੀ ਸਮੱਸਿਆ ਜਾਂਚਾਂਗੇ।
ਨਿਊਟੋਨੀਅਨ ਮਕੈਨਿਕਸ ਅੰਦਰ, ਇਸ ਸਮੱਸਿਆ ਦੇ ਦੋ ਅੱਤ ਮਾਮਲੇ ਨਿਊਨਤਮ ਗੁੰਝਲਦਾਰਤਾ ਵਾਲ਼ੇ ਗਣਿਤ ਨੂੰ ਬਣਾ ਕੇ ਨਿਖੇੜੇ ਜਾ ਸਕਦੇ ਹਨ: (1) ਦੋਵੇਂ ਬਾਡੀਆਂ (ਵਸਤੂਆਂ) ਇੱਕ ਦੂਜੀ ਤੋਂ ਇੱਕ ਸੰਪੂਰਣ ਇਲਾਸਟਿਕ ਕੋਲਿਜ਼ਨ ਵਿੱਚ ਵਾਪਸ ਹੁੰਦੀਆਂ ਹਨ। (2) ਦੋਵੇਂ ਵਸਤੂਆਂ ਇਕੱਠੀਆਂ ਹੋ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਇੱਕ ਸਿੰਗਲ ਕਣ ਦੇ ਰੂਪ ਵਿੱਚ ਗਤੀ ਕਰਨਾ ਜਾਰੀ ਰੱਖਦੀਆਂ ਹਨ। ਦੂਜਾ ਮਾਮਲਾ ਸੰਪੂਰਣ ਗੈਰ-ਇਲਾਸਟਿਕ ਕੋਲਿਜ਼ਨ ਦਾ ਮਾਮਲਾ ਹੁੰਦਾ ਹੈ। ਦੋਵੇਂ ਮਾਮਲਿਆਂ ਲਈ, ਮੋਮੈਂਟਮ, ਪੁੰਜ, ਅਤੇ ਕੁੱਲ ਐਨਰਜੀ ਸੁਰੱਖਿਅਤ ਰੱਖੇ ਜਾਂਦੇ ਹਨ। ਫੇਰ ਵੀ, ਗੈਰ-ਇਲਾਸਟਿਕ ਟਕ੍ਰਾਓ ਦੇ ਮਾਮਲਿਆਂ ਅੰਦਰ ਗਤਿਜ ਊਰਜਾ ਸੁਰੱਖਿਅਤ ਨਹੀਂ ਰਹਿੰਦੀ। ਸ਼ੁਰੂਆਤੀ ਕਾਇਨੈਟਿਕ ਐਨਰਜੀ ਦਾ ਕੁੱਝ ਹਿੱਸਾ ਹੀਟ ਵਿੱਚ ਤਬਦੀਲ ਹੋ ਜਾਂਦਾ ਹੈ।
ਦੂਜੇ ਮਾਮਲੇ ਵਿੱਚ, ਦੋ ਪੁੰਜ ਜਿਹਨਾਂ ਦੇ ਮੋਮੈਂਟਮ p1 = m1v1 ਅਤੇ p2 = m2v2 ਹੁੰਦੇ ਹਨ, ਟਕਰਾ ਕੇ ਇੱਕ ਸਿੰਗਲ ਕਣ ਪੈਦਾ ਕਰਦੇ ਹਨ ਜਿਸ ਦਾ ਸੁਰੱਖਿਅਤ ਪੁੰਜ m = m1 + m2 ਮੂਲ ਸਿਸਟਮ ਦੀ ਸੈਂਟਰ ਔਫ ਮਾਸ ਵਿਲੌਸਿਟੀ, vcm = (m1v1 + m2v2)/(m1 + m2)ਉੱਤੇ ਯਾਤਰਾ ਕਰਦਾ ਹੈ। ਕੁੱਲ ਮੋਮੈਂਟਮ p = p1 + p2 ਸੁਰੱਖਿਅਤ ਰਹਿੰਦਾ ਹੈ।
ਚਿੱਤਰ. 3‑10 ਇੱਕ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਪਹਿਲੂ ਤੋਂ ਦੋ ਕਣਾਂ ਦੇ ਇਨਇਲਾਸਟਿਕ ਟਕਰਾਅ ਨੂੰ ਸਮਝਾਉਂਦਾ ਹੈ। ਸਮਾਂ ਕੰਪੋਨੈਂਟ E1/c ਅਤੇ E2/c ਜੁੜ ਕੇ ਨਤੀਜਨ ਵੈਕਟਰ ਦੇ ਕੁੱਲ E/c ਜਿੰਨੇ ਹੋ ਜਾਂਦੇ ਹਨ, ਜਿਸਦਾ ਅਰਥ ਹੈ ਕਿ ਊਰਜਾ ਸੁਰੱਖਿਅਤ ਰਹਿੰਦੀ ਹੈ। ਇਸੇਤਰਾਂ ਸਪੇਸ ਕੰਪੋਨੈਂਟ p1 ਅਤੇ p2 ਜੁੜ ਕੇ ਨਤੀਜਨ ਵੈਕਟਰ ਦਾ p ਰਚਦੇ ਹਨ। ਚਾਰ-ਮੋਮੈਂਟਮ, ਜਿਵੇਂ ਉਮੀਦ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਇੱਕ ਸੁਰੱਖਿਅਤ ਮਾਤਰਾ ਹੁੰਦੀ ਹੈ। ਫੇਰ ਵੀ, ਫਿਊਜ਼ ਹੋਣ ਵਾਲੇ ਕਣ ਦਾ ਇਨਵੇਰੀਅੰਟ ਪੁੰਜ, ਉਸ ਬਿੰਦੂ ਰਾਹੀਂ ਮਿਲਦਾ ਹੈ ਜਿੱਥੇ ਕੁੱਲ ਮੋਮੈਂਟਮ ਦਾ ਇਨਵੇਰੀਅੰਟ ਹਾਇਪ੍ਰਬੋਲਾ ਊਰਜਾ ਧੁਰੇ ਨੂੰ ਕੱਟਦਾ ਹੈ, ਜੋ ਟਕਰਾਉਣ ਵਾਲ਼ੇ ਵਿਅਕਤੀਗਤ ਕਣਾਂ ਦੇ ਇਨਵੇਰੀਅੰਟ ਪੁੰਜਾਂ ਦੇ ਜੋੜ ਬਰਾਬਰ ਨਹੀਂ ਹੁੰਦਾ। ਸੱਚਮੁੱਚ ਹੀ, ਇਹ ਵਿਅਕਤੀਗਤ ਕਣਾਂ ਦੇ ਪੁੰਜਾਂ ਦੇ ਜੋੜ ਤੋਂ ਜਿਆਦਾ ਹੁੰਦਾ ਹੈ:m > m1 + m2।[32]: 94–97
ਇਸ ਸੀਨਾਰੀਓ ਦੀਆਂ ਘਟਨਾਵਾਂ ਨੂੰ ਉਲਟੇ ਕ੍ਰਮ ਤੋਂ ਦੇਖਦੇ ਹੋਏ, ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ ਪੁੰਜ ਦੀ ਗੈਰ-ਸੁਰੱਖਿਅਤਾ ਇੱਕ ਸਾਂਝੀ ਹੋਣ ਵਾਲੀ ਚੀਜ਼ ਹੈ: ਜਦੋਂ ਕੋਈ ਗੈਰ-ਸਥਿਰ ਬੁਨਿਆਦੀ ਕਣ ਤਤਕਾਲੀਨ ਹੀ ਦੋ ਹਲਕੇ ਕਣਾਂ ਵਿੱਚ ਡਿਸੇਅ (ਵਿਕੀਰਤ) ਹੋ (ਰਿਸ) ਜਾਂਦਾ ਹੈ, ਤਾਂ ਕੁੱਲ ਊਰਜਾ ਸੁਰੱਖਿਅਤ ਰਹਿੰਦੀ ਹੈ, ਪਰ ਪੁੰਜ ਨਹੀਂ। ਪੁੰਜ ਦਾ ਕੁੱਝ ਹਿੱਸਾ ਗਤਿਜ ਊਰਜਾ ਵਿੱਚ ਤਬਦੀਲ ਹੋ ਜਾਂਦਾ ਹੈ।[34]: 134–138
ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ ਦੀ ਚੋਣ
[ਸੋਧੋ]
ਕੋਈ ਵੀ ਅਜਿਹੀ ਫ੍ਰੇਮ ਚੁਣਨ ਦੀ ਅਜ਼ਾਦੀ ਜਿਸ ਵਿੱਚ ਕੋਈ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨਾ ਹੋਵੇ, ਸਾਨੂੰ ਅਜਿਹੀ ਫ੍ਰੇਮ ਲੈਣ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ ਜੋ ਵਿਸ਼ੇਸ਼ ਤੌਰ ਤੇ ਕਿਸੇ ਖਾਸ ਕੰਮ ਲਈ ਅਸਾਨੀਦਾਇਕ ਹੋਵੇ। ਮੋਮੈਂਟਮ ਅਤੇ ਐਨਰਜੀ ਸਮੱਸਿਆਵਾਂ ਦੇ ਵਿਸ਼ਲੇਸ਼ਣ ਵਾਸਤੇ, ਸਭ ਤੋਂ ਜਿਆਦਾ ਅਸਾਨੀਦਾਇਕ ਫ੍ਰੇਮ ਆਮਤੌਰ ਤੇ ਮੋਮੈਂਟਮ-ਦਾ-ਕੇਂਦਰ ਫ੍ਰੇਮ (ਜਿਸਨੂੰ ਜ਼ੀਰੋ-ਮੋਮੈਂਟਮ ਫ੍ਰੇਮ, ਜਾਂ COM ਫ੍ਰੇਮ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ) ਹੁੰਦੀ ਹੈ। ਇਹ ਅਜਿਹੀ ਫ੍ਰੇਮ ਹੈ ਜਿਸ ਵਿੱਚ ਸਿਸਟਮ ਦੇ ਕੁੱਲ ਮੋਮੈਂਟਮ ਦਾ ਸਪੇਸ ਕੰਪੋਨੈਂਟ ਜ਼ੀਰੋ ਹੁੰਦਾ ਹੈ। ਚਿੱਤਰ. 3‑11 ਕਿਸੇ ਉੱਚ ਸਪੀਡ ਕਣ ਦਾ ਦੋ ਡੌਟਰ (ਔਲਾਦ) ਕਣਾਂ ਵਿੱਚ ਟੁੱਟ ਜਾਣਾ ਪ੍ਰਦ੍ਰਸ਼ਿਤ ਕਰਦਾ ਹੈ। ਲੈਬ ਫ੍ਰੇਮ ਵਿੱਚ, ਔਲਾਦ ਕਣ ਤਰਜੀਹੀ ਤੌਰ ਤੇ ਮੂਲ ਕਣ ਦੇ ਵਕ੍ਰਿਤ ਪਥ ਦੀ ਦਿਸ਼ਾ ਦੇ ਨਾਲ ਨਾਲ ਨਿਕਾਸਿਤ ਹੁੰਦੇ ਹਨ। ਮੋਮੈਂਟਮ-ਦੇ-ਕੇਂਦਰ ਵਾਲ਼ੀ ਫ੍ਰੇਮ ਅੰਦਰ, ਫੇਰ ਵੀ, ਦੋਵੇਂ ਔਲਾਦ ਕਣ ਉਲਟੀਆਂ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਨਿਕਾਸਿਤ ਹੁੰਦੇ ਹਨ, ਭਾਵੇਂ ਉਹਨਾਂ ਦੇ ਪੁੰਜ ਅਤੇ ਉਹਨਾਂ ਦੀਆਂ ਵਿਲੌਸਿਟੀਆਂ ਦੇ ਮੁੱਲ ਆਮਤੌਰ ਤੇ ਇੱਕੋ ਜਿਹੇ ਨਹੀਂ ਹੁੰਦੇ। ’‘ਜਾਣ-ਪਛਾਣ ਵੱਲ ਪਰਤੋ’’
ਊਰਜਾ ਅਤੇ ਮੋਮੈਂਟਮ ਸੁਰੱਖਿਅਤਾ
[ਸੋਧੋ]ਪਰਸਪਰ ਕ੍ਰਿਆ ਕਰ ਰਹੇ ਕਣਾਂ ਦੇ ਨਿਊਟੋਨੀਅਨ ਵਿਸ਼ਲੇਸ਼ਣ ਅੰਦਰ, ਫ੍ਰੇਮਾਂ ਦਰਮਿਆਨ ਰੂਪਾਂਤ੍ਰਨ ਸਰਲ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਸਭ ਕੁੱਝ ਜੋ ਜਰੂਰੀ ਹੁੰਦਾ ਹੈ ਉਹ ਹੁੰਦਾ ਹੈ ਸਭ ਵਿਲੌਸਿਟੀਆਂ ਪ੍ਰਤਿ ਗੈਲੀਲੀਅਨ ਰੂਪਾਂਤ੍ਰਨ ਲਾਗੂ ਕਰਨਾ। ਕਿਉਂਕਿ v' = v − u, ਮੋਮੈਂਟਮ p' = p − mu ਹੁੰਦਾ ਹੈ। ਜੇਕਰ ਕਣਾਂ ਦੇ ਕਿਸੇ ਪਰਸਪਰ ਕ੍ਰਿਆ ਕਰਦੇ ਸਿਸਟਮ ਦਾ ਕੁੱਲ ਮੋਮੈਂਟਮ ਇੱਕ ਫ੍ਰੇਮ ਅੰਦਰ ਸੁਰੱਖਿਅਤ ਰਹਿੰਦਾ ਨਿਰੀਖਤ ਕੀਤਾ ਜਾਂਦਾ ਹੋਵੇ, ਤਾਂ ਕਿਸੇ ਹੋਰ ਫ੍ਰੇਮ ਅੰਦਰ ਵੀ ਇਹ ਇਸੇ ਤਰਾਂ ਨਿਰੀਖਤ ਕੀਤਾ ਜਾਣਾ ਹੁੰਦਾ ਹੋਵੇਗਾ।[34]: 241–245
ਮੋਮੈਂਟਮ-ਦੇ-ਕੇਂਦਰ ਵਾਲੀ ਫ੍ਰੇਮ ਅੰਦਰ ਮੋਮੈਂਟਮ ਦੀ ਸੁਰੱਖਿਅਤਾ ਇਹ ਮੰਗਦੀ ਹੈ ਕਿ ਟਕਰਾਓ ਤੋਂ ਪਹਿਲਾਂ ਅਤੇ ਬਾਦ ਦੋਵੇਂ ਸਮੇਂ p = 0 ਰਹੇ। ਨਿਊਟੋਨੀਅਨ ਵਿਸ਼ਲੇਸ਼ਣ ਅੰਦਰ, ਪੁੰਜ ਦੀ ਸੁਰੱਖਿਅਤਾ ਬੋਲਦੀ ਹੈ ਕਿ m = m1 + m2 ਹੁੰਦਾ ਹੈ। ਸਰਲ ਕੀਤੇ ਹੋਏ, ਇੱਕ-ਅਯਾਮੀ ਸੀਨਾਰੀਓ ਲਈ, ਜਿਹਨਾਂ ਉੱਤੇ ਅਸੀਂ ਵਿਚਾਰ ਕਰਦੇ ਰਹੇ ਹਾਂ, ਕਣਾਂ ਦੇ ਬਾਹਰ ਜਾਂਦੇ ਮੋਮੈਂਟਾ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰ ਸਕਣ ਤੋਂ ਪਹਿਲਾਂ ਸਿਰਫ ਇੱਕੋ ਵਾਧੂ ਹੱਦਬੰਦੀ ਲਾਜ਼ਮੀ ਹੁੰਦੀ ਹੈ—ਇੱਕ ਊਰਜਾ ਸ਼ਰਤ। ਕਾਇਨੈਟਿਕ ਐਨਰਜੀ ਦੇ ਨੁਕਸਾਨ ਬਗੈਰ ਕਿਸੇ ਸੰਪੂਰਣ ਇਲਾਸਟਿਕ ਟਕਰਾਅ ਦੇ ਇੱਕ-ਅਯਾਮੀ ਮਾਮਲੇ ਅੰਦਰ, ਮੋਮੈਂਟਮ-ਦੇ-ਕੇਂਦਰ ਵਾਲੀ ਫ੍ਰੇਮ ਅੰਦਰ ਪੁਨਰ-ਬਾਊਂਡ ਹੁੰਦੇ ਕਣਾਂ ਦੀਆਂ ਬਾਹਰ ਜਾਂਦੀਆਂ ਵਿਲੌਸਿਟੀਆਂ ਸ਼ੁੱਧ ਤੌਰ ਤੇ ਉਹਨਾਂ ਦੀਆਂ ਅੰਦਰ ਆਉਂਦੀਆਂ ਵਿਲੌਸਟੀਆਂ ਦੇ ਇੱਕ ਬਰਾਬਰ ਅਤੇ ਉਲਟ ਹੁੰਦੀਆਂ ਹਨ। ਕੁੱਲ ਗਤਿਜ ਊਰਜਾ ਦੇ ਨੁਕਸਾਨ ਵਾਲੇ ਗੈਰ-ਇਲਾਸਟਿਕ ਟਕਰਾਅ ਦੇ ਮਾਮਲੇ ਵਿੱਚ, ਰੀਬਾਊਂਡ ਹੁੰਦੇ ਕਣਾਂ ਦੀਆਂ ਆਊਟਗੋਇੰਗ ਵਿਲੌਸਟੀਆਂ ਜ਼ੀਰੋ ਰਹਿਣਗੀਆਂ।[34]: 241–245
ਨਿਊਟੋਨੀਅਨ ਮੋਮੈਂਟਾ, ਜੋ p = mv ਕੈਲਕੁਲੇਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਅਧੀਨ ਪੂਰੀ ਤਰਾਂ ਵਰਤਾਓ ਕਰਨ ਤੋਂ ਅਸਫ਼ਲ ਰਹਿੰਦਾ ਹੈ। ਵਿਲੌਸਟੀਆਂ v' = v − u ਦੀ ਰੇਖਿਕ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਨੂੰ ਉੱਚ ਤੌਰ ਤੇ ਗੈਰ-ਲੀਨੀਅਰ v' = (v − u)/(1 − vu/c2), ਨਾਲ ਬਦਲ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਜੋ ਇੱਕ ਫ੍ਰੇਮ ਅੰਦਰ ਮੋਮੈਂਟਮ ਦੀ ਸੁਰੱਖਿਅਤਾ ਨੂੰ ਪ੍ਰਦ੍ਰਸ਼ਿਤ ਕਰਦੀ ਕੋਈ ਕੈਲਕੁਲੇਸ਼ਨ ਦੂਜੀਆਂ ਫ੍ਰੇਮਾਂ ਅੰਦਰ ਅਪ੍ਰਮਾਣਿਤ (ਇਨਵੈਲਿੱਡ) ਰਹੇ। ਆਈਨਸਟਾਈਨ ਨੇ ਜਾਂ ਤਾਂ ਮੋਮੈਂਟਮ ਦੀ ਸੁਰੱਖਿਅਤਾ ਨੂੰ ਛੱਡ ਦੇਣ ਦਾ ਸਾਹਮਣਾ ਕੀਤਾ ਸੀ, ਜਾਂ ਮੋਮੈਂਟਮ ਦੀ ਪਰਿਭਾਸ਼ਾ ਬਦਲਣ ਦਾ ਸਾਹਮਣਾ ਕੀਤਾ ਸੀ। ਜਿਵੇਂ ਅਸੀਂ ਚਾਰ-ਮੋਮੈਂਟਮ ਉੱਤੇ ਪਿਛਲੇ ਹਿੱਸੇ ਵਿੱਚ ਚਰਚਾ ਕੀਤੀ ਸੀ।, ਇਹ ਦੂਜਾ ਵਿਕਲਪ ਰਿਹਾ ਸੀ ਜੋ ਆਈਨਸਟਾਈਨ ਨੇ ਚੁਣਿਆ।[32]: 104
ਊਰਜਾ ਅਤੇ ਮੋਮੈਂਟਮ ਵਾਸਤੇ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਸੁਰੱਖਿਅਤਾ ਨਿਯਮ ਊਰਜਾ, ਮੋਮੈਂਟਮ ਅਤੇ ਪੁੰਜ ਲਈ ਤਿੰਨ ਕਲਾਸੀਕਲ ਸੁਰੱਖਿਅਤਾ ਨਿਯਮਾਂ ਦਾ ਸਥਾਨ ਲੈ ਲੈਂਦਾ ਹੈ। ਪੁੰਜ ਸੁਤੰਤਰ ਤੌਰ ਤੇ ਹੋਰ ਜਿਆਦਾ ਦੇਰ ਸੁਰੱਖਿਅਤ ਨਹੀਂ ਰਹਿੰਦਾ, ਕਿਉਂਕਿ ਇਹ ਕੁੱਲ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਊਰਜਾ ਅੰਦਰ ਸ਼ਾਮਿਲ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਇਹ ਊਰਜਾ ਦੀ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਸੁਰੱਖਿਅਤਾ ਨੂੰ ਗੈਰ-ਸਾਪੇਖਿਕ (ਨੌਨ-ਰੀਲੇਟੀਵਿਸਟਿਕ) ਮਕੈਨਿਕਸ ਵਿੱਚ ਸੁਰੱਖਿਅਤਾ ਨਾਲ਼ੋਂ ਇੱਕ ਜਿਆਦਾ ਸਰਲ ਧਾਰਨਾ ਬਣਾ ਦਿੰਦਾ ਹੈ, ਕਿਉਂਕਿ ਕੁੱਲ ਊਰਜਾ ਬਗੈਰ ਕਿਸੇ ਯੋਗਤਾ ਦੇ ਸੁਰੱਖਿਅਤ ਰਹਿੰਦੀ ਹੈ। ਹੀਟ ਵਿੱਚ ਰੂਪਾਂਤ੍ਰਿਤ ਹੋਈ ਗਤਿਜ ਊਰਜਾ ਜਾਂ ਅੰਦਰੂਨੀ ਪੁਟੈਂਸ਼ਲ ਐਨਰਜੀ ਪੁੰਜ ਵਿੱਚ ਇੱਕ ਵਾਧਾ ਦਿਖਾਉਂਦੀ ਹੈ।[34]: 127
ਉਦਾਹਰਨ: ਪੁੰਜ ਅਤੇ ਊਰਜਾ ਦੀ ਇੱਕ-ਸਮਾਨਤਾ ਕਰਕੇ, ਬੁਨਿਆਦੀ ਕਣ ਪੁੰਜ, ਊਰਜਾ ਯੂਨਿਟਾਂ ਵਿੱਚ ਮਨਮਰਜੀ ਨਾਲ ਬਿਆਨ ਕੀਤੇ ਜਾਂਦੇ ਹਨ, ਜਿੱਥੇ 1 MeV = 1×106 ਇਲੈਕਟ੍ਰੌਨ ਵੋਲਟ ਹੁੰਦਾ ਹੈ। ਇੱਕ ਚਾਰਜ ਕੀਤਾ ਹੋਇਆ ਪਾਈਔਨ, ਪੁੰਜ 139.57 MeV (ਇਲੈਕਟ੍ਰੌਨ ਪੁੰਜ ਨਾਲੋਂ ਤਕਰੀਬਨ 273 ਗੁਣਾ) ਵਾਲਾ ਇੱਕ ਕਣ ਹੁੰਦਾ ਹੈ। ਇਹ ਗੈਰ-ਸਥਿਰ (ਅਨਸਟੇਬਲ) ਹੁੰਦਾ ਹੈ ਜੋ ਪੁੰਜ 105.66 MeV (ਇਲੈਕਟ੍ਰੌਨ ਪੁੰਜ ਨਾਲ਼ੋਂ ਤਕਰੀਬਨ 207 ਗੁਣਾ) ਦੇ ਇੱਕ ਮਿਊਔਨ ਅਤੇ ਇੱਕ ਐਂਟੀ-ਨਿਊਟ੍ਰੀਨੋ ਵਿੱਚ ਡਿਸੇਅ ਹੋ ਜਾਂਦਾ ਹੈ, ਜਿਸਦਾ ਪੁੰਜ ਤਕਰੀਬਨ ਹੁੰਦਾ ਹੀ ਨਹੀਂ। ਪਾਈਔਨ ਪੁੰਜ ਅਤੇ ਮਿਊਔਨ ਪੁੰਜ ਦਰਮਿਆਨ ਫਰਕ 33.91 MeV ਹੁੰਦਾ ਹੈ।
ਚਿੱਤਰ. 3‑12a ਪਾਈਔਨ ਦੀ ਰੈਸਟ ਫ੍ਰੇਮ ਅੰਦਰ ਇਸ ਡਿਸੇਅ ਪ੍ਰਤੀਕ੍ਰਿਆ ਵਾਸਤੇ ਊਰਜਾ-ਮੋਮੈਂਟਮ ਚਿੱਤਰ ਪ੍ਰਦ੍ਰਸ਼ਿਤ ਕਰਦਾ ਹੈ। ਨਿਊਟ੍ਰੀਨੋ ਅਪਣੇ ਨਾ-ਬਰਾਬਰ ਪੁੰਜ ਕਰਕੇ, ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਦੇ ਬਹੁਤ ਨਜ਼ਦੀਕ ਗਤੀ ਕਰਦਾ ਹੈ। ਇਸਦੀ ਊਰਜਾ ਵਾਸਤੇ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਦਰਸਾਅ, ਫੋਟੋਨ ਦੀ ਤਰਾਂ, Eν = pc, ਹੁੰਦਾ ਹੈ ਜੋ ਇਸਦੇ ਮੋਮੈਂਟਮ ਦੇ ਸਪੇਸ ਕੰਪੋਨੈਂਟ ਦਾ ਮੁੱਲ ਵੀ ਹੁੰਦਾ ਹੈ। ਮੋਮੈਂਟਮ ਸੁਰੱਖਿਅਤ ਕਰਨ ਲਈ, ਮਿਊਔਨ ਨਿਊਟ੍ਰੀਨੋ ਦੇ ਮੋਮੈਂਟਮ ਦੇ ਸਪੇਸ ਕੰਪੋਨੈਂਟ ਜਿੰਨਾ ਹੀ ਮੁੱਲ ਰੱਖਦਾ ਹੈ, ਪਰ ਇਸਦੀ ਦਿਸ਼ਾ ਉਲਟ ਹੁੰਦੀ ਹੈ।
ਇਸ ਡਿਸੇਅ ਰੀਐਕਸ਼ਨ ਦੀ ਊਰਜਾਤਮਿਕਤਾ ਦਾ ਅਲਜਬ੍ਰਿਕ ਵਿਸ਼ਲੇਸ਼ਣ ਔਨਲਾਈਨ ਉਪਲਬਧ ਹੈ,[39] ਇਸਲਈ ਚਿੱਤਰ. 3‑12bਈਸਦੀ ਜਗਹ ਇੱਕ ਗ੍ਰਾਫਿਕ ਕੈਲੁਲੇਟਰ ਹੱਲ ਪੇਸ਼ ਕਰਦਾ ਹੈ। ਨੀਊਟ੍ਰੀਨੋ ਦੀ ਊਰਜਾ 29.79 MeV ਹੁੰਦੀ ਹੈ, ਅਤੇ ਮਿਊਔਨ ਦੀ ਊਰਜਾ 33.91 − 29.79 = 4.12 MeV. ਹੁੰਦੀ ਹੈ। ਦਿਲਸਚਪੀ ਨਾਲ, ਜਿਆਦਾਤਰ ਊਰਜਾ ਜ਼ੀਰੋ-ਨਜ਼ਦੀਕੀ-ਪੁੰਜ ਨਿਊਟ੍ਰੀਨੋ ਦੁਆਰਾ ਚੁੱਕੀ ਜਾਂਦੀ ਹੈ।
ਮੁਢਲੀ ਜਾਣਕਾਰੀ ਤੋਂ ਪਰੇ
[ਸੋਧੋ]ਇਸ ਹਿੱਸੇ ਅੰਦਰਲੇ ਪ੍ਰਸੰਗ ਮਹੱਤਵਪੂਰਨ ਤੌਰ ਤੇ ਪਿਛਲੇ ਹਿੱਸਿਆਂ ਵਾਲੇ ਪ੍ਰਸੰਗਾਂ ਨਾਲ਼ੋਂ ਜਿਆਦਾ ਤਕਨੀਕੀ ਕਠਿਨਾਈ ਵਾਲ਼ੇ ਹਨ ਅਤੇ ਵਕਰਿਤ ਸਪੇਸਟਾਈਮ ਨਾਲ ਜਾਣ-ਪਛਾਣ ਨੂੰ ਸਮਝਣ ਲਈ ਲਾਜ਼ਮੀ ਨਹੀਂ ਹਨ।
ਤੀਬਰਤਾ
[ਸੋਧੋ]
ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਘਟਨਾਵਾਂ ਦੇ ਨਿਰਦੇਸ਼ਾਂਕਾਂ (ਕੋਆਰਡੀਨੇਟਾਂ) ਨੂੰ ਇੱਕ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਤੋਂ ਕਿਸੇ ਹੋਰ ਫ੍ਰੇਮ ਦੇ ਨਿਰਦੇਸ਼ਾਂਕਾਂ (ਕੋਆਰਡੀਨੇਟਾਂ) ਨਾਲ ਸਬੰਧਤ ਕਰਦਾ ਹੈ। ਵਿਲੌਸਿਟੀਆਂ ਦੀ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਬਣਤਰ ਦੋ ਵਿਲੌਸਿਟੀਆਂ ਨੂੰ ਇਕੱਠਾ ਜੋੜਨ ਲਈ ਵਰਤੀ ਜਾਂਦੀ ਹੈ। ਬਾਦ ਵਾਲੀਆਂ ਗਣਨਾਵਾਂ ਕਰਨ ਲਈ ਵਰਤੇ ਜਾਂਦੇ ਫਾਰਮੂਲੇ ਗੈਰ-ਰੇਖਿਕ ਹੁੰਦੇ ਹਨ, ਜੋ ਉਹਨਾਂ ਨੂੰ ਸਬੰਧਤ ਗੈਲੀਲੀਅਨ ਫਾਰਮੂਲਿਆਂ ਨਾਲ਼ੋਂ ਹੋਰ ਜਿਆਦਾ ਕੰਪਲੈਕਸ ਬਣਾ ਦਿੰਦੇ ਹਨ।
ਇਹ ਗੈਰ-ਰੇਖਿਤਾ ਮਾਪਦੰਡਾਂ ਦੀ ਸਾਡੀ ਚੋਣ ਦੀ ਇੱਕ ਕਲਾਕਾਰੀ ਹੈ।[8]: 47–59 ਅਸੀਂ ਪਹਿਲਾਂ ਨੋਟ ਕੀਤਾ ਹੈ ਕਿ ਇੱਕ x–ct ਸਪੇਸਟਾਈਮ ਡਾਇਗ੍ਰਾਮ ਅੰਦਰ, ਮੂਲ ਬਿੰਦੂ ਤੋਂ ਕੁੱਝ ਸਥਿਰ ਸਪੇਸਟਾਈਮ ਅਰਸੇ ਉੱਤੇ ਬਿੰਦੂ ਇੱਕ ਇਨਵੇਰੀਅੰਟ ਹਾਇਪ੍ਰਬੋਲਾ ਰਚਦੇ ਹਨ। ਅਸੀਂ ਇਹ ਵੀ ਨੋਟ ਕੀਤਾ ਹੈ ਕਿ ਮਿਆਰੀ ਬਣਤਰ ਅੰਦਰ ਦੋ ਸਪੇਸਟਾਈਮ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ ਦੇ ਨਿਰਦੇਸ਼ਾਂਕ (ਕੋਆਰਡੀਨੇਟ) ਸਿਸਟਮ ਇੱਕ ਦੂਜੇ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਹਾਇਪ੍ਰਬੋਲਿਕ ਤੌਰ ਤੇ ਘੁੰਮ ਜਾਂਦੇ ਹਨ।
ਇਹਨਾਂ ਸਬੰਧਾਂ ਨੂੰ ਲਿਖਣ ਲਈ ਕੁਦਰਤੀ ਫੰਕਸ਼ਨ ਟ੍ਰਿਗਨੋਮੈਟ੍ਰਿਕ ਫੰਕਸ਼ਨਾਂ ਦੇ ਹਾਇਪ੍ਰਬੋਲਿਕ ਤੁੱਲ ਹੁੰਦੇ ਹਨ। ਚਿੱਤਰ. 4‑1a ਇੱਕ ਯੂਨਿਟ ਸਰਕਲ ਨੂੰ sin(a) ਅਤੇ cos(a) ਸਮੇਤ ਦਿਖਾ ਰਿਹਾ ਹੈ, ਇਸ ਡਾਇਆਗ੍ਰਾਮ ਅਤੇ ਮੁਢਲੀ ਟ੍ਰਿਗਨੋਮੈਟ੍ਰੀ ਦੇ ਜਾਣੇ-ਪਛਾਣੇ ਯੂਨਿਟ ਚੱਕਰ ਦਰਮਿਆਨ ਇੱਕੋ ਇੱਕ ਅੰਤਰ ਇਹ ਹੈ ਕਿ a ਨੂੰ ਕਿਰਨ ਅਤੇ x-axis ਦਰਮਿਆਨ ਕੋਣ (ਐਂਗਲ) ਦੇ ਤੌਰ ਤੇ ਵਿਆਖਿਅਤ ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ, ਸਗੋਂ x-axis ਤੋਂ ਕਿਰਨ ਦੁਆਰਾ ਮੱਲੇ ਜਾਂਦੇ ਸੈਕਟਰ (ਹਿੱਸੇ) ਦੇ ਖੇਤਰ ਤੋਂ ਦੁੱਗਣੇ ਦੇ ਤੌਰ ਤੇ ਵਿਆਖਿਅਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। (ਸੰਖਿਅਕ ਤੌਰ ਤੇ, ਯੂਨਿਟ ਚੱਕਰ ਵਾਸਤੇ ਕੋਣ ਅਤੇ 2 × area ਨਾਪ ਇੱਕੋ ਜਿਹੇ ਹੁੰਦੇ ਹਨ।) ਚਿੱਤਰ. 4‑1b sinh(a) ਅਤੇ cosh(a) ਨਾਲ ਇੱਕ ਯੂਨਿਟ ਹਾਇਪ੍ਰਬੋਲਾ ਦਿਖਾ ਰਿਹਾ ਹੈ, ਜਿੱਥੇ a ਨੂੰ ਇਸੇਤਰਾਂ, ਰੰਗ ਕੀਤੇ ਗਏ ਖੇਤਰ ਤੋਂ ਦੁੱਗਣੇ ਦੇ ਤੌਰ ਤੇ ਵਿਆਖਿਅਤ ਕੀਤਾ ਗਿਆ ਹੈ।[40] ਚਿੱਤਰ. 4‑2 sinh, cosh, ਅਤੇ tanh ਫੰਕਸ਼ਨਾਂ ਦੇ ਪਲੌਟ ਪੇਸ਼ ਕਰਦਾ ਹੈ।
ਯੂਨਿਟ ਚੱਕਰ ਵਾਸਤੇ, ਕਿਰਨ ਦੀ ਸਲੋਪ ਇਸਤਰਾਂ ਮਿਲਦੀ ਹੈ
ਕਾਰਟੀਜ਼ੀਅਨ ਪਲੇਨ ਅੰਦਰ, ਐਂਗਲ θ ਦੁਆਰਾ ਬਿੰਦੂ (x', y') ਵਿੱਚ ਬਿੰਦੂ (x, y) ਦੀ ਰੋਟੇਸ਼ਨ ਇਸਤਰਾਂ ਮਿਲਦੀ ਹੈ;
ਸਪੇਸਟਾਈਮ ਡਾਇਗ੍ਰਾਮ ਵਿੱਚ, ਵਿਲੌਸਿਟੀ ਮਾਪਦੰਡ ਸਲੋਪ ਦਾ ਤੁੱਲ ਹੈ। ਤੀਬਰਤਾ, φ, ਇਸਤਰਾਂ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ[34]: 96–99
ਜਿੱਥੇ
ਹੁੰਦਾ ਹੈ।
ਉੱਪਰ ਦਰਸਾਈ ਤੀਬਰਤਾ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ ਬਹੁਤ ਵਰਤੋਂਦਾਇਕ ਰਹਿੰਦੀ ਹੈ ਕਿਉਂਕਿ ਬਹੁਤ ਸਾਰੀਆਂ ਸਮੀਕਰਨਾਂ ਓਦੋਂ ਇੱਕ ਸਰਲਤਮ ਰੂਪ ਧਾਰਨ ਕਰ ਲੈਂਦੀਆਂ ਹਨ ਜਦੋਂ ਇਸਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਲਿਖੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਤੀਬਰਤਾ ਸਰਲ ਤੌਰ ਤੇ ਇਸ ਹੇਠਾਂ ਲਿਖੇ ਕੋ-ਲੀਨੀਅਰ ਵਿਲੌਸਿਟੀ-ਜੋੜ ਫਾਰਮੂਲੇ ਅੰਦਰ ਜੋੜਾਤਮਿਕ ਹੀ ਹੁੰਦੀ ਹੈ;[8]: 47–59
ਜਾਂ ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ,
ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਇੱਕ ਸਰਲ ਰੂਪ ਧਾਰਨ ਕਰ ਲੈਂਦੀਆਂ ਹਨ ਜਦੋਂ ਤੀਬਰਤਾ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਦਰਸਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ। γ ਫੈਕਟਰ ਇਸਤਰਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ,
ਇੱਕਸਾਰ ਵਿਲੌਸਟੀ ਨਾਲ ਅਤੇ ਸਪੇਸ ਨਿਰਦੇਸ਼ਾਂਕਾਂ (ਕੋਆਰਡੀਨੇਟਾਂ) ਦੇ ਧੁਰਿਆਂ ਦੀ ਰੋਟੇਸ਼ਨ ਬਗੈਰ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਗਤੀ ਦਰਸਾਉਣ ਵਾਲ਼ੀਆਂ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਨੂੰ ਬੂਸਟਸ (ਬੂਸਟਾਂ) ਕਿਹਾ ਜਾਂਦਾ ਹੈ।
γ ਅਤੇ γβ ਨੂੰ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਵਿੱਚ ਬਰਦੇ ਹੋਏ, ਜਿਵੇਂ ਪਹਿਲਾਂ ਪ੍ਰਸਤੁਤ ਕੀਤਾ ਗਿਆ ਸੀ, ਅਤੇ ਮੈਟ੍ਰਿਕਸ ਰੂਪ ਵਿੱਚ ਦੁਬਾਰਾ ਲਿਖਦੇ ਹੋਏ, x direction ਵਿੱਚ ਲੌਰੰਟਜ਼ ਬੂਸਟਾਂ ਨੂੰ ਇਸਤਰਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ;
ਅਤੇ x ਦਿਸ਼ਾ ਵਿੱਚ ਉਲਟ ਲੌਰੰਟਜ਼ ਬੂਸਟ ਇਸਤਰਾਂ ਲਿਖੇ ਜਾ ਸਕਦੇ ਹਨ;
ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਲੌਰੰਟਜ਼ ਬੂਸਟ ਮਿੰਕੋਵਸਕੀ ਸਪੇਸਟਾਈਮ ਅੰਦਰ ਹਾਇਪ੍ਰਬੋਲਿਕ ਰੋਟੇਸ਼ਨਾਂ ਪ੍ਰਸਤੁਤ ਕਰਦੇ ਹਨ।[34]: 96–99
ਹਾਇਪ੍ਰਬੋਲਿਕ ਫੰਕਸ਼ਨਾਂ ਨੂੰ ਵਰਤਣ ਦੇ ਫਾਇਦੇ ਅਜਿਹੇ ਹਨ ਕਿ ਕੁੱਝ ਪੁਸਤਕਾਂ ਜਿਵੇਂ ਟੇਲਰ ਅਤੇ ਵੀਲਰ ਦੁਆਰਾ ਲਿਖੀਆਂ ਗਈਆਂ ਕਲਾਸੀਕਲ ਪੁਸਤਕਾਂ ਇਹਨਾਂ ਦੀ ਵਰਤੋਂ ਨੂੰ ਸ਼ੁਰੂਆਤੀ ਸਟੇਜ ਉੱਤੇ ਵਰਤਣਾ ਪੇਸ਼ ਕਰਦੀਆਂ ਹਨ।[8][41] [note 8]
4‑ਵੈਕਟਰ
[ਸੋਧੋ]
ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ
ਉੱਪਰ ਨਾਮ ਲਏ ਗਏ ਚਾਰ-ਵੈਕਟਰ ਊਰਜਾ-ਮੋਮੈਂਟਮ 4‑ਵੈਕਟਰ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ, ਪਰ ਕਿਸੇ ਵੱਡੇ ਜ਼ੋਰ ਤੋਂ ਬਗੈਰ ਹਨ। ਸੱਚਮੁੱਚ, ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਕੋਈ ਵੀ ਬੁਨਿਆਦੀ ਡੈਰੀਵੇਸ਼ਨ (ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ) ਨੂੰ ਇਹਨਾਂ ਦੀ ਜਰੂਰਤ ਨਹੀਂ ਪੈਂਦੀ। ਪਰ ਇੱਕ ਵਾਰ ਸਮਝ ਲੈਣ ਤੋਂ ਬਾਦ, 4‑ਵੈਕਟਰ, ਅਤੇ ਹੋਰ ਸਰਵ ਸਧਾਰਨ ਤੌਰ ਤੇ ਟੈਂਸਰਾਂ ਨੂੰ ਸਮਝ ਜਾਣ ਤੋਂ ਬਾਦ, ਇਹ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਧਾਰਨਾਤਮਿਕ ਸਮਝ ਅਤੇ ਗਣਿਤ ਨੂੰ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਸਰਲ ਬਣਾ ਦਿੰਦੇ ਹਨ। ਅਜਿਹੀਆਂ ਚੀਜ਼ਾਂ ਨਾਲ ਵਿਸ਼ੇਸ਼ ਤੌਰ ਤੇ ਕੰਮ ਕਰਨਾ ਅਜਿਹੇ ਫਾਰਮੂਲਿਆਂ ਦੀ ਪ੍ਰੇਰਣਾ ਦਿੰਦਾ (ਵੱਲ ਲਿਜਾਂਦਾ) ਹੈ ਜੋ ਸਪੱਸ਼ਟ (ਪ੍ਰਗਟ) ਤੌਰ ਤੇ ਸਾਪੇਖਿਕ ਤੌਰ ਤੇ ਇਨੇਰੀਅੰਟ ਹੁੰਦੇ ਹਨ, ਜੋ ਗੈਰ-ਸੂਖਮ ਸੰਦ੍ਰਭਾਂ ਅੰਦਰ ਇੱਕ ਵਿਚਾਰਨਯੋਗ ਫਾਇਦਾ ਹੈ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਅਪਣੀ ਆਮ ਕਿਸਮ ਵਿੱਚ ਮੈਕਸਵੈੱਲ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਦੀ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਇਨਵੇਰੀਅੰਸ ਨੂੰ ਸਾਬਤ ਕਰਨਾ ਸੂਖਮ ਨਹੀਂ ਹੈ, ਜਦੋਂਕਿ ਫੀਲਡ ਸਟ੍ਰੈਂਥ ਟੈਂਸਰ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਵਰਤਦੇ ਹੋਏ ਇਹ ਸਿਰਫ ਇੱਕ ਰੁਟੀਨ ਹਿਸਾਬ ਕਿਤਾਬ (ਸੱਚਮੁੱਚ ਕਿਸੇ ਨਿਰੀਖਣ ਤੋਂ ਕੁੱਝ ਵੀ ਜਿਆਦਾ ਨਹੀਂ) ਬਣ ਜਾਂਦਾ ਹੈ। ਦੂਜੇ ਪਾਸੇ, ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ, ਸ਼ੁਰੂ ਤੋਂ ਹੀ, ਭਾਰੀ ਮਾਤਰਾ ਵਿੱਚ 4‑ਵੈਕਟਰ ਉੱਤੇ ਟਿਕੀ ਹੈ, ਅਤੇ ਹੋਰ ਸਰਵ ਸਧਾਰਨ ਤੌਰ ਤੇ ਟੈਂਸਰਾਂ ਉੱਤੇ ਟਿਕੀ ਹੋਈ ਹੈ, ਜੋ ਭੌਤਿਕੀ ਤੌਰ ਤੇ ਸਬੰਧਤ ਇਕਾਈਆਂ ਪ੍ਰਸਤੁਤ ਕਰਦੇ ਹਨ। ਇਹਨਾਂ ਨੂੰ ਅਜਿਹੀਆਂ ਇਕੁਏਸ਼ਨਾਂ ਰਾਹੀਂ ਸਬੰਧਤ ਕਰਨਾ, ਜੋ ਖਾਸ ਨਿਰਦੇਸ਼ਾਂਕਾਂ (ਕੋਆਰਡੀਨੇਟਾਂ) ਉੱਤੇ ਨਹੀਂ ਟਿਕਦੀਆਂ, ਟੈਂਸਰਾਂ ਦੀ ਮੰਗ ਕਰਦਾ ਹੈ, ਜੋ ਅਜਿਹੇ 4‑ਵੈਕਟਰ ਨੂੰ ਕਿਸੇ ਵਕਰਿਤ ਸਪੇਸਟਾਈਮ ਅੰਦਰ ਜੋੜਨ ਦੇ ਸਮਰੱਥ ਹੈ, ਅਤੇ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ ਕਿਸੇ ਫਲੈਟ ਸਪੇਸਟਾਈਮ ਨਾਲ ਨਹੀਂ ਜੋੜਦਾ। ਟੈਂਸਰਾਂ ਦਾ ਅਧਿਐਨ ਇਸ ਲੇਖ ਦੇ ਸਕਪ ਤੋਂ ਬਾਹਰ ਦੀ ਗੱਲ ਹੈ, ਜੋ ਸਪੇਸਟਾਈਮ ਦੀ ਬੁਨਿਆਦੀ ਚਰਚਾ ਹੀ ਮੁਹੱਈਆ ਕਰਵਾਉਂਦਾ ਹੈ।
4-ਵੈਕਟਰਾਂ ਦੀ ਪਰਿਭਾਸ਼ਾ
[ਸੋਧੋ]ਇੱਕ 4-ਟੁਪਲ, A = (A0, A1, A2, A3) ਇੱਕ "4-ਵੈਕਟਰ" ਹੁੰਦਾ ਹੈ ਜੇਕਰ ਇਸਦਾ ਕੰਪੋਨੈਂਟ A i ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਮੁਤਾਬਿਕ ਫ੍ਰੇਮਾਂ ਦਰਮਿਆਨ ਰੂਪਾਂਤ੍ਰਿਤ ਹੋਵੇ।
ਜੇਕਰ (ct, x, y, z) ਨਿਰਦੇਸ਼ਾਂਕ (ਕੋਆਰਡੀਨੇਟ) ਵਰਤੀਏ, ਤਾਂ A ਇੱਕ 4–ਵੈਕਟਰ ਹੁੰਦਾ ਹੈ ਜੇਕਰ ਇਹ ਹੇਠਾਂ ਲਿਖੇ ਅਨੁਸਾਰ (x-direction ਵਿੱਚ) ਰੂਪਾਂਤ੍ਰਿਤ ਹੁੰਦਾ ਹੋਵੇ;
ਜੋ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਦੀ ਸ਼ੁਰੂਆਤੀ ਪ੍ਰਸਤੁਤੀ ਅੰਦਰ ਸਿਰਫ ct ਨੂੰ A0 ਨਾਲ ਅਤੇ x ਨੂੰ A1 ਨਾਲ ਬਦਲ ਕੇ ਹੀ ਆ ਜਾਂਦਾ ਹੈ। ਜਿਵੇਂ ਆਮਤੌਰ ਤੇ ਹੁੰਦਾ ਹੈ, ਜਦੋਂ ਅਸੀਂ x, t, ਆਦਿ ਲਿਖਦੇ ਹਾਂ, ਤਾਂ ਸਾਡਾ ਮਤਲਬ ਆਮਤੌਰ ਤੇ Δx, Δt ਆਦਿ ਹੁੰਦਾ ਹੈ।
ਕਿਸੇ 4–ਵੈਕਟਰ ਦੇ ਅੰਤਿਮ ਤਿੰਮ ਕੰਪੋਨੈਂਟ ਜਰੂਰ ਹੀ ਤਿੰਨ-ਅਯਾਮੀ ਸਪੇਸ ਅੰਦਰ ਇੱਕ ਸਟੈਂਡਰਡ ਵੈਕਟਰ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ। ਇਸਲਈ, ਇੱਕ 4–ਵੈਕਟਰ ਜਰੂਰ ਹੀ (c Δt, Δx, Δy, Δz) ਦੀ ਤਰਾਂ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਅਧੀਨ ਅਤੇ ਰੋਟੇਸ਼ਨਾਂ ਅਧੀਨ ਰੁਪਾਂਤ੍ਰਿਤ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।[28]: 36–59
4-ਵੈਕਟਰਾਂ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ
[ਸੋਧੋ]- ਰੇਖਿਕ ਮੇਲ ਅਧੀਨ ਬੰਦ ਕਰਨਾ: ਜੇਕਰ A ਅਤੇ B 4-ਵੈਕਟਰ ਹਨ, ਤਾਂ C = aA + aB ਵੀ ਇੱਕ 4-ਵੈਕਟਰ ਹੀ ਹੁੰਦਾ ਹੈ।
- ਇਨਰ-ਪ੍ਰੋਡਕਟ ਇਨਵੇਰੀਅੰਸ: ਜੇਕਰ A ਅਤੇ B 4-ਵੈਕਟਰ ਹਨ, ਤਾਂ ਇਹਨਾਂ ਦਾ ਅੰਦਰੂਨੀ ਗੁਣਨਫਲ (ਇਨਰ ਪ੍ਰੋਡਕਟ) (ਸਕੇਲਰ ਗੁਣਨਫਲ ਇਨਵੇਰੀਅੰਟ ਰਹਿੰਦਾ ਹੈ, ਯਾਨਿ ਕਿ, ਇਹਨਾਂ ਦਾ ਇਨਰ ਗੁਣਨਫਲ ਓਸ ਫ੍ਰੇਮ ਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦਾ ਜਿਸ ਵਿੱਚ ਇਹ ਕੈਲਕੁਲੇਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਨੋਟ ਕਰੋ ਕਿ ਕਿਵੇਂ ਇਨਰ ਗੁਣਨਫਲ ਦੀ ਕੈਲਕੁਲੇਸ਼ਨ ਕਿਸੇ 3-ਵੈਕਟਰ ਦੇ ਇਨਰ ਗੁਣਨਫਲ ਦੀ ਕੈਲਕੁਲੇਸ਼ਨ ਤੋਂ ਫਰਕ ਰੱਖਦੀ ਹੈ। ਅੱਗੇ ਲਿਖੇ, ਅਤੇ , 3-ਵੈਕਟਰ ਹਨ:
- ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਅਧੀਨ ਇਨਵੇਰੀਅੰਟ ਹੋਣ ਦੇ ਨਾਲ ਨਾਲ, ਉੱਪਰਲਾ ਇਨਰ ਪ੍ਰੋਡਕਟ 3-space ਵਿੱਚ ਰੋਟੇਸ਼ਨਾਂ ਅਧੀਨ ਵੀ ਇਨਵੇਰੀਅੰਟ ਰਹਿੰਦਾ ਹੈ।
- ਦੋ ਵੈਕਟਰਾਂ ਨੂੰ ਔਰਥੋਗਨਲ ਹੁੰਦੇ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਜੇਕਰ ਹੋਵੇ। 3-ਵੈਕਟਰ, ਦੇ ਮਾਮਲੇ ਤੋਂ ਉਲਟ, ਔਰਥੋਗਨਲ 4-ਵੈਕਟਰ ਜਰੂਰੀ ਨਹੀਂ ਹੈ ਕਿ ਇੱਕ ਦੂਜੇ ਨਾਲ ਸਮਕੋਣਾਂ ਉੱਤੇ ਹੀ ਹੋਣ। ਕਨੂੰਨ (ਰੂਲ) ਇਹ ਹੁੰਦਾ ਹੈ ਕਿ ਦੋ 4-ਵੈਕਟਰ ਔਰਥੋਗਨਲ ਹੁੰਦੇ ਹਨ ਜੇਕਰ ਇਹ ਓਸ 45° ਰੇਖਾ ਤੋਂ ਬਰਾਬਰ ਅਤੇ ਉਲਟ ਦਿਸ਼ਾ ਵਾਲ਼ੇ ਕੋਣਾਂ ਰਾਹੀਂ ਸ਼ੁਰੂ ਹੋਏ ਹੋਣ ਜੋ ਕਿਸੇ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਦੀ ਸੰਸਾਰ ਰੇਖਾ ਹੁੰਦੀ ਹੈ। ਇਸਦਾ ਅਰਥ ਇਹ ਹੈ ਕਿ ਕੋਈ ਲਾਈਟ-ਲਾਈਕ 4-ਵੈਕਟਰ ਅਪਣੇ ਆਪ ਨਾਲ ਔਰਥੋਗੋਨਲ ਹੁੰਦਾ ਹੈ।
- ਕਿਸੇ ਵੈਕਟਰ ਦੇ ਮੁੱਲ ਦੀ ਇਨਵੇਰੀਅੰਸ: ਕਿਸੇ ਵੈਕਟਰ ਦਾ ਮੈਗਨੀਟਿਊਡ ਕਿਸੇ 4-ਵੈਕਟਰ ਦਾ ਅਪਣੇ ਆਪ ਨਾਲ ਇਨਰ ਗੁਣਨਫਲ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਹ ਇੱਕ ਫ੍ਰੇਮ-ਤੋਂ-ਸੁਤੰਤਰ ਵਿਸ਼ੇਸ਼ਤਾ ਹੁੰਦੀ ਹੈ। ਜਿਵੇਂ ਅਰਸਿਆਂ ਨਾਲ ਹੁੰਦਾ ਹੈ, ਮੈਗਨੀਟਿਊਡ ਪੌਜ਼ਟਿਵ, ਨੈਗਟਿਵ ਜਾਂ 0 ਹੋ ਸਕਦਾ ਹੈ, ਤਾਂ ਜੋ ਵੈਕਟਰਾਂ ਨੂੰ ਟਾਈਮਲਾਈਕ, ਸਪੇਸਲਾਈਕ ਜਾਂ ਨੱਲ (ਲਾਈਟਲਾਈਕ) ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਨ। ਨੋਟ ਕਰੋ ਕਿ ਕੋਈ ਨੱਲ ਵੈਕਟਰ ਜ਼ੀਰੋ ਵੈਕਟਰ ਦੀ ਤਰਾਂ ਨਹੀਂ ਹੁੰਦਾ। ਇੱਕ ਨੱਲ ਵੈਕਟਰ ਉਹ ਵੈਕਟਰ ਹੁੰਦਾ ਹੈ ਜਿਸਦੇ ਲਈ ਹੋਵੇ, ਜਦੋਂਕਿ ਇੱਕ 0 ਵੈਕਟਰ ਓਹ ਹੁੰਦਾ ਹੈ ਜਿਸਦੇ ਸਾਰੇ ਕੰਪੋਨੈਂਟ ਜ਼ੀਰੋ ਹੋਣ। ਨੀਤੀ (ਨੌਰਮ) ਦੀ ਇਨਵੇਰੀਅੰਸ ਨੂੰ ਸਮਝਾਉੰਦੇ ਸਪੈਸ਼ਲ ਮਾਮਲਿਆਂ ਵਿੱਚ ਇਨਵੇਰੀਅੰਟ ਅਰਸਾ ਅਤੇ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਮੋਮੈਂਟਮ ਵੈਕਟਰ ਦੀ ਇਨਵੇਰੀਅੰਟ ਲੰਬਾਈ ਸ਼ਾਮਿਲ ਹੈ।[34]: 178–181 [28]: 36–59
4-ਵੈਕਟਰਾਂ ਦੀਆਂ ਉਦਾਹਰਨਾਂ
[ਸੋਧੋ]- ਵਿਸਥਾਪਨ 4-ਵੈਕਟਰ: ਜਿਸਨੂੰ ਹੋਰ ਤਰਾਂ ਸਪੇਸਟਾਈਮ ਦੂਰੀ ਦੇ ਤੌਰ ਤੇ ਵੀ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ, ਇਹ (Δt, Δx, Δy, Δz), ਹੁੰਦਾ ਹੈ ਜਾਂ ਅਤਿਸੂਖਮ ਦੂਰੀਆਂ ਲਈ (dt, dx, dy, dz) ਹੁੰਦਾ ਹੈ।
- ਵਿਲੌਸਟੀ 4-ਵੈਕਟਰ: ਇਹ ਉਦੋਂ ਨਤੀਜੇ ਵਜੋਂ ਮਿਲਦਾ ਹੈ ਜਦੋਂ ਡਿਸਪਲੇਸਮੈਂਟ (ਵਿਸਥਾਪਨ) 4-ਵੈਕਟਰ ਨੂੰ ਰਾਹੀਂ ਤਕਸੀਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜਿੱਥੇ ਦੋਵੇਂ ਘਟਨਾਵਾਂ ਦਰਮਿਆਨ ਪ੍ਰੌਪਰ ਟਾਈਮ ਹੁੰਦਾ ਹੈ ਜੋ dt, dx, dy, ਅਤੇ dz ਦਿੰਦਾ ਹੈ।
- 4-velocity ਕਿਸੇ ਕਣ ਦੀ ਸੰਸਾਰ ਰੇਖਾ ਪ੍ਰਤਿ ਸਪਰਸ਼ ਰੇਖਾ ਹੈ, ਅਤੇ ਇਸਦੀ ਲੰਬਾਈ ਕਣ ਦੀ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਅੰਦਰ ਸਮੇਂ ਦੀ ਇੱਕ ਯੂਨਿਟ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।
- ਕੋਈ ਪ੍ਰਵੇਗਿਤ ਕਣ ਅਜਿਹੀ ਕੋਈ ਇਨ੍ਰਸ਼ੀਅਲ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਨਹੀਂ ਰੱਖਦਾ ਹੁੰਦਾ ਜਿਸ ਵਿੱਚ ਇਹ ਹਮੇਸ਼ਾਂ ਤੋਂ ਹੀ ਰੈਸਟ ਤੇ ਰਹੇ। ਫੇਰ ਵੀ, ਜਿਵੇਂ ਟ੍ਰਾਂਸਵਰਸ ਡੌਪਲਰ ਪ੍ਰਭਾਵ ਵਾਲੀ ਸ਼ੁਰੂਆਤੀ ਚਰਚਾ ਵਿੱਚ ਪਹਿਲਾਂ ਬਿਆਨ ਕੀਤਾ ਗਿਆ ਹੈ, ਕੋਈ ਅਜਿਹੀ ਇਨ੍ਰਸ਼ੀਅਲ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਹਮੇਸ਼ਾਂ ਹੀ ਖੋਜੀ ਜਾ ਸਕਦੀ ਹੈ ਜੋ ਪਲਭਰ ਲਈ ਕਣ ਦੇ ਨਾਲ ਸਹਿਗਤੀਸ਼ੀਲ ਹੋ ਰਹੀ ਹੋਵੇ। ਇਹ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ, ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਐਪਲੀਕੇਸ਼ਨ ਨੂੰ ਪ੍ਰਵੇਗਿਤ ਕਣਾਂ ਦੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਯੋਗ ਕਰਦੀ ਹੈ।
- ਕਿਉਂਕਿ ਫੋਟੌਨ ਨੱਲ ਰੇਖਾਵਾਂ ਉੱਤੇ ਗਤੀ ਕਰਦੇ ਹਨ, ਇਸਲਈ ਕਿਸੇ ਫੋਟੌਨ ਵਾਸਤੇ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਕੋਈ 4-velocity ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। ਅਜਿਹੀ ਕੋਈ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਨਹੀਂ ਹੁੰਦੀ ਜਿਸ ਵਿੱਚ ਕੋਈ ਫੋਟੌਨ ਅਰਾਮ ਉੱਤੇ ਹੋਵੇ, ਅਤੇ ਕੋਈ ਪਲਭਰ ਲਈ ਸਹਿਗਤੀਸ਼ੀਲ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਕਿਸੇ ਫੋਟੌਨ ਦੇ ਪਥ ਦੇ ਨਾਲ ਨਾਲ ਸਥਾਪਿਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।
- ਊਰਜਾ-ਮੋਮੈਂਟਮ 4-ਵੈਕਟਰ: ਜਿਵੇਂ ਊਰਜਾ ਅਤੇ ਮੋਮੈਂਟਮ ਉੱਤੇ ਹਿੱਸੇ ਵਿੱਚ ਚਰਚਿਤ ਕੀਤਾ ਗਿਆ ਹੈ,
- ਜਿਵੇਂ ਪਹਿਲਾਂ ਵੀ ਇਸ਼ਾਰਾ ਕੀਤਾ ਗਿਆ ਸੀ, ਊਰਜਾ-ਮੋਮੈਂਟਮ 4-ਵੈਕਟਰ ਲਈ ਬਦਲਦੇ ਇਲਾਜ ਹਨ ਤਾਂ ਜੋ ਇਸਨੂੰ ਜਾਂ ਦੇ ਤੌਰ ਤੇ ਲਿਖਿਆ ਜਾਂਦਾ ਵੀ ਦੇਖਿਆ ਜਾ ਸਕੇ। ਪਹਿਲਾ ਕੰਪੋਨੈਂਟ ਕਿਸੇ ਦਿੱਤੀ ਹੋਈ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਅੰਦਰ ਕਣ (ਜਾਂ ਕਣਾਂ ਦੇ ਸਿਸਟਮ) ਦੀ (ਪੁੰਜ ਸਮੇਤ) ਕੁੱਲ ਊਰਜਾ ਹੁੰਦਾ ਹੈ, ਜਦੋਂਕਿ ਬਾਕੀ ਬਚੇ ਕੰਪੋਨੈਂਟ ਇਸਦਾ ਸਪੈਸ਼ੀਅਲ ਮੋਮੈਂਟਮ ਹੁੰਦੇ ਹਨ। ਊਰਜਾ-ਮੋਮੈਂਟਮ 4-ਵੈਕਟਰ ਇੱਕ ਸੁਰੱਖਿਅਤ ਕੀਤੀ ਗਈ ਮਾਤਰਾ ਹੁੰਦੀ ਹੈ।
- ਐਕਸਲ੍ਰੇਸ਼ਨ 4-ਵੈਕਟਰ: ਇਹ ਵਿਲੌਸਿਟੀ 4-ਵੈਕਟਰ ਦਾ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਡੈਰੀਵੇਟਿਵ ਲੈਂਦੇ ਹੋਏ ਮਿਲਦਾ ਹੈ।
- ਫੋਰਸ 4-ਵੈਕਟਰ: ਇਹ ਮੋਮੈਂਟਮ 4-ਵੈਕਟਰ ਦਾ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਡੈਰੀਵੇਟਿਵ ਹੁੰਦਾ ਹੈ।
ਜਿਵੇਂ ਉਮੀਦ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਉੱਪਰ ਦਰਸਾਏ 4-ਵੈਕਟਰਾਂ ਦੇ ਅੰਤਿਮ ਕੰਪੋਨੈਂਟ ਸਾਰੇ ਹੀ ਮਿਆਰੀ 3-ਵੈਕਟਰ ਹੁੰਦੇ ਹਨ ਜੋ ਸਪੈਸ਼ੀਅਲ 3-ਮੋਮੈਂਟਮ, 3-ਫੋਰਸ ਆਦਿ ਨਾਲ ਸਬੰਧਤ ਹਨ।[34]: 178–181 [28]: 36–59
4-ਵੈਕਟਰ ਅਤੇ ਭੌਤਿਕੀ ਨਿਯਮ
[ਸੋਧੋ]ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਪਹਿਲਾ ਨਿਰਵਿਵਾਦ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤ ਸਭ ਇਨ੍ਰਸ਼ੀਅਲ ਫ੍ਰੇਮਾਂ ਦੀ ਸਮਾਨਤਾ ਘੋਸ਼ਿਤ ਕਰਦਾ ਹੈ। ਇੱਕ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਅੰਦਰ ਲਾਗੂ ਹੋਣ ਵਾਲ਼ਾ ਕੋਈ ਭੌਤਿਕੀ ਨਿਯਮ ਲਾਜ਼ਮੀ ਤੌਰ ਤੇ ਸਭ ਫ੍ਰੈਮਾਂ ਅੰਦਰ ਵੀ ਲਾਗੂ ਰਹਿੰਦਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਕਿਉਂਕਿ ਨਹੀਂ ਤਾਂ ਫ੍ਰੇਮਾਂ ਦਰਮਿਆਨ ਡਿਫ੍ਰੈਂਟੀਸ਼ੀਏਟ ਕਰਨਾ ਸੰਭਵ ਰਹੇਗਾ। ਜਿਵੇਂ ਊਰਜਾ ਅਤੇ ਮੋਮੈਂਟਮ ਸੁਰੱਖਿਅਤਾ ਵਾਲੀ ਪਿਛਲੀ ਚਰਚਾ ਵਿੱਚ ਨੋਟ ਕੀਤਾ ਗਿਆ ਹੈ, ਨਿਊਟੋਨੀਅਨ ਮੋਮੈਂਟਾ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਅਧੀਨ ਪੂਰੀ ਤਰਾਂ ਵਰਤਾਓ ਕਰਨ ਤੋਂ ਅਸਫਲ ਰਹਿੰਦਾ ਹੈ, ਅਤੇ ਆਈਨਸਟਾਈਨ ਨੇ ਮੋਮੈਂਟਮ ਦੀ ਪਰਿਭਾਸ਼ਾ ਨੂੰ ਮੋਮੈਂਟਮ ਦੀ ਸੁਰੱਖਿਅਤਾ ਉੱਤੇ ਹਾਰ ਮੰਨ ਲੈਣ ਨਾਲ਼ੋਂ 4-ਵੈਕਟਰਾਂ ਨੂੰ ਸ਼ਾਮਿਲ ਕਰਨ ਵਾਲੀ ਪਰਿਭਾਸ਼ਾ ਵਿੱਚ ਬਦਲ ਦੇਣ ਨੂੰ ਤਰਜੀਹ ਦਿੱਤੀ।
ਭੌਤਿਕੀ ਨਿਯਮ ਜਰੂਰ ਹੀ ਓਹਨਾਂ ਬਣਤਰਾਂ ਉੱਤੇ ਅਧਾਰਿਤ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ ਜੋ ਫ੍ਰੇਮ ਤੋਂ ਸੁਤੰਤਰ ਹੋਣ। ਇਸਦਾ ਅਰਥ ਹੈ ਕਿ ਭੌਤਿਕੀ ਨਿਯਮ ਅਜਿਹੀਆਂ ਸਮੀਕਰਨਾਂ ਦਾ ਰੂਪ ਲੈ ਸਕਦੇ ਹਨ ਜੋ ਸਕੇਲਰਾਂ ਨੂੰ ਜੋੜਦੀਆਂ ਹੋਣ, ਜੋ ਹਮੇਸ਼ਾਂ ਹੀ ਫ੍ਰੇਮ ਤੋਂ ਸੁਤੰਤਰ ਹੁੰਦੇ ਹਨ। ਫੇਰ ਵੀ 4-ਵੈਕਟਰਾਂ ਵਾਲੀਆਂ ਇਕੁਏਸ਼ਨਾਂ ਢੁਕਵੇਂ ਰੈਂਕ (ਰੁਤਬੇ) ਵਾਲੇ ਟੈਂਸਰਾਂ ਦੀ ਵਰਤੋਂ ਦੀ ਮੰਗ ਕਰਦੀਆਂ ਹਨ, ਜੋ ਅਪਣੇ ਆਪ ਵਿੱਚ 4-ਵੈਕਟਰਾਂ ਤੋਂ ਬਣੇ ਸੋਚੇ ਜਾਂਦੇ ਹਨ।[34]: 186
ਐਕਸਲ੍ਰੇਸ਼ਨ
[ਸੋਧੋ]
ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ
ਇਹ ਇੱਕ ਸਾਂਝੀ ਗਲਤ-ਧਾਰਨਾ ਹੈ ਕਿ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਸਿਰਫ ਇਨ੍ਰਸ਼ੀਅਲ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ ਪ੍ਰਤਿ ਹੀ ਲਾਗੂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ, ਅਤੇ ਇਹ ਕਿ ਇਹ ਪ੍ਰਵੇਗਿਤ ਚੀਜ਼ਾਂ ਜਾਂ ਪ੍ਰਵੇਗਿਤ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ ਨੂੰ ਸੰਭਾਲਣ ਦੇ ਯੋਗ ਨਹੀਂ ਹੈ। ਦਰਅਸਲ, ਪ੍ਰਵੇਗਿਤ ਚੀਜ਼ਾਂ ਨੂੰ ਆਮਤੌਰ ਤੇ ਉੱਕਾ ਹੀ ਪ੍ਰਵੇਗਿਤ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ ਨਾਲ ਵਾਸਤਾ ਰੱਖਣ ਦੀ ਜਰੂਰਤ ਤੋਂ ਬਗੈਰ ਹੀ ਵਿਸ਼ਲੇਸ਼ਣਬੱਧ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਿਰਫ ਓਦੋਂ ਹੀ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਲੋੜ ਪੈਂਦੀ ਹੈ ਜਦੋਂ ਗਰੈਵੀਟੇਸ਼ਨ ਮਹੱਤਵਪੂਰਨ ਹੋਵੇ।[42]
ਪ੍ਰਵੇਗਿਤ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ ਨੂੰ ਚੰਗੀ ਤਰਾਂ ਸੰਭਾਲਣਾ, ਫੇਰ ਵੀ, ਕੁੱਝ ਸਾਵਧਾਨੀ ਮੰਗਦਾ ਹੈ। ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਅਤੇ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦਰਮਿਆਨ ਅੰਤਰ ਇਹ ਹੈ ਕਿ
- (1) ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ, ਸਾਰੀਆਂ ਵਿਲੌਸਟੀਆਂ ਸਾਪੇਖਿਕ ਹੁੰਦੀਆਂ ਹਨ, ਪਰ ਪ੍ਰਵੇਗ ਸ਼ੁੱਧ ਹੁੰਦਾ ਹੈ।
- (2) ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ, ਸਾਰੀਆਂ ਗਤੀਆਂ ਸਾਪੇਖਿਕ ਹੁੰਦੀਆਂ ਹਨ, ਚਾਹੇ ਇਨ੍ਰਸ਼ੀਅਲ, ਪ੍ਰਵੇਗਿਤ, ਜਾਂ ਘੁੰਮ ਰਹੀਆਂ ਹੋਣ।
ਇਸ ਅੰਤਰ ਨੂੰ ਸੰਭਾਲਣ ਲਈ, ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਕਤਿਰ ਸਪੇਸਟਾਈਮ ਵਰਤਦੀ ਹੈ।[42] ਇਸ ਹਿੱਸੇ ਵਿੱਚ, ਅਸੀਂ ਪ੍ਰਵੇਗਿਤ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ ਵਾਲੇ ਕਈ ਸੀਨਾਰੀਓਆਂ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਾਂਗੇ। ਜਾਣ-ਪਛਾਣ ਵੱਲ ਪਰਤੋ
ਦੀਵਾਨ-ਬੇਰਾਨ-ਬੈੱਲ ਸਪੇਸਸ਼ਿਪ ਪੈਰਾਡੌਕਸ
[ਸੋਧੋ]
ਦੀਵਾਨ-ਬੇਰਾਨ-ਬੈੱਲ ਸਪੇਸਸ਼ਿਪ ਪੈਰਾਡੌਕਸ (ਬੈੱਲ ਦੀ ਸਪੇਸ-ਸ਼ਿਪ ਪਹੇਲੀ) ਅਜਿਹੀ ਇੱਕ ਸਮੱਸਿਆ ਦੀ ਇੱਕ ਚੰਗੀ ਮਿਸਾਲ ਹੈ ਜਿੱਥੇ ਸਪੇਸਟਾਈਮ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਰਾਹੀਂ ਅਸਹਿਯੋਗਿਕ ਸਹਿਜ-ਗਿਆਨ ਤਰਕ ਮਸਲਿਆਂ ਵੱਲ ਲਿਜਾ ਸਕਦਾ ਹੈ।
ਚਿੱਤਰ. 4‑4 ਵਿੱਚ, ਦੋ ਇੱਕੋ ਜਿਹੇ ਸਪੇਸ-ਸ਼ਿਪ ਸਪੇਸ ਅੰਦਰ ਤੈਰਦੇ ਹਨ ਅਤੇ ਇੱਕ ਦੂਜੇ ਪ੍ਰਤਿ ਸਾਪੇਖਿਕ ਤੌਰ ਤੇ ਰੈਸਟ ਉੱਤੇ ਹੁੰਦੇ ਹਨ। ਇਹ ਇੱਕ ਅਜਿਹੀ ਡੋਰੀ ਰਾਹੀਂ ਜੁੜੇ ਹੁੰਦੇ ਹਨ ਜੋ ਟੁੱਟਣ ਤੋਂ ਪਹਿਲਾਂ ਸਿਰਫ ਇੱਕ ਸੀਮਤ ਮਾਤਰਾ ਦੀ ਖਿੱਚ ਦੇ ਹੀ ਯੋਗ ਹੁੰਦੀ ਹੈ। ਸਾਡੀ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਅੰਦਰ, ਜੋ ਔਬਜ਼ਰਵਰ ਦੀ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਹੁੰਦੀ ਹੈ, ਕਿਸੇ ਦਿੱਤੇ ਹੋਏ ਪਲ ਉੱਤੇ, ਦੋਵੇਂ ਸਪੇਸ-ਸ਼ਿਪ ਇੱਕੋ ਜਿਹੇ ਸਥਿਰ ਪ੍ਰੌਪਰ ਐਕਸਲ੍ਰੇਸ਼ਨ ਨਾਲ ਉਹਨਾਂ ਦਰਮਿਆਨ ਰੇਖਾ ਦੇ ਨਾਲ ਨਾਲ ਦੀ ਉਸੇ ਦਿਸ਼ਾ ਵਿੱਚ ਪ੍ਰਵੇਗਿਤ ਹੁੰਦੇ ਹਨ।[note 9] ਕੀ ਡੋਰੀ ਟੁੱਟ ਜਾਂਦੀ ਹੈ?
ਇਸ ਹਿੱਸੇ ਵਾਸਤੇ ਮੁੱਖ ਲੇਖ ਪੁਨਰ-ਗਿਣਤੀ ਕਰਦਾ ਹੈ ਕਿ ਕਿਵੇਂ, ਜਦੋਂ ਪਹੇਲੀ ਨਵੀਂ ਨਵੀਂ ਸੀ ਅਤੇ ਸਾਪੇਖਿਕ ਤੌਰ ਤੇ ਅਗਿਆਤ ਸੀ, ਇੱਥੋਂ ਤੱਕ ਕਿ ਪ੍ਰੋਫੈਸ਼ਨਲ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਵੀ ਹੱਲ ਕੱਢਣ ਲਈ ਕਠਿਨਾਈ ਮੰਨ ਚੁੱਕੇ ਸੀ। ਤਰਕ ਦੀਆਂ ਦੋ ਲਾਈਨਾਂ ਉਲਟ ਨਤੀਜਿਆਂ ਵੱਲ ਲਿਜਾਂਦੀਆਂ ਹਨ। ਦੋਵੇਂ ਤਰਕ, ਜੋ ਥੱਲੇ ਪੇਸ਼ ਕੀਤੇ ਗਏ ਹਨ, ਦੋਸ਼ਪੂਰਨ (ਗਲਤ) ਹਨ, ਭਾਵੇਂ ਇਹਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਨਤੀਜਾ ਸਹੀ ਜਵਾਬ ਦਿੰਦਾ ਹੈ।[34]: 106, 120–122
- ਰੈਸਟ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਅੰਦਰਲੇ ਔਬਜ਼ਰਵਰਾਂ ਲਈ, ਸਪੇਸ-ਸ਼ਿਪ ਇੱਕ ਦੂਰੀ L ਨਾਲ ਸ਼ੁਰੂ ਕਰਦੇ ਹਨ ਅਤੇ ਪ੍ਰਵੇਗ ਦੌਰਾਨ ਇੰਨੀ ਹੀ ਦੂਰੀ ਬਣਾਈਂ ਰੱਖਦੇ ਹਨ। ਪ੍ਰਵੇਗ ਦੌਰਾਨ, ਪ੍ਰਵੇਗਿਤ ਹੋ ਰਹੇ ਸਪੇਸ-ਸ਼ਿਪਾਂ ਦੀ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਅੰਦਰ ਦੂਰੀ L' = γL ਦੀ ਇੱਕ ਸੁੰਗੜੀ ਹੋਈ ਦੂਰੀ L ਹੁੰਦੀ ਹੈ। ਇੱਕ ਕਾਫੀ ਲੰਬੇ ਸਮੇਂ ਬਾਦ, γ ਬਹੁਤ ਜਿਆਦਾ ਫੈਕਟਰ ਵਿੱਚ ਵਧ ਜਾਵੇਗਾ ਅਤੇ ਡੋਰੀ ਜਰੂਰ ਟੁੱਟ ਜਾਣੀ ਚਾਹੀਦੀ ਹੈ।
- ਮੰਨ ਲਓ A ਅਤੇ B ਪਿਛਲਾ ਅਤੇ ਅਗਲਾ ਸਪੇਸ-ਸ਼ਿਪ ਹਨ। ਸਪੇਸ-ਸ਼ਿਪਾਂ ਦੀ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਅੰਦਰ, ਹਰੇਕ ਸਪੇਸ-ਸ਼ਿਪ ਦੂਜੇ ਸਪੇਸ-ਸ਼ਿਪ ਨੂੰ ਉਹੀ ਕੁੱਝ ਕਰਦਾ ਵੇਖਦਾ ਹੈ ਜੋ ਇਹ ਖੁਦ ਕਰ ਰਿਹਾ ਹੁੰਦਾ ਹੈ। A ਕਹਿੰਦਾ ਹੈ ਕਿ B ਦਾ ਐਕਸਲ੍ਰੇਸ਼ਨ ਉੰਨਾ ਹੀ ਹੈ ਜਿੰਨਾ ਉਸਦਾ ਅਪਣਾ ਹੈ, ਅਤੇ B ਦੇਖਦਾ ਹੈ ਕਿ A ਉਸਦੀ ਹਰੇਕ ਮੂਵ (ਹਿਲਜੁਲ) ਨਾਲ ਮੇਲ ਖਾਂਦਾ ਹੈ। ਇਸਤਰਾਂ ਸਪੇਸ-ਸ਼ਿਪ ਇੱਕੋ ਜਿਹੀ ਦੂਰੀ ਬਣਾਈਂ ਰੱਖਦੇ ਹਨ, ਅਤੇ ਡੋਰੀ ਨਹੀਂ ਟੁੱਟਦੀ।[34]: 106, 120–122
ਪਹਿਲੇ ਤਰਕ ਨਾਲ ਸਮੱਸਿਆ ਇਹ ਹੈ ਕਿ ਸਪੇਸ-ਸ਼ਿਪਾਂ ਦੀ ਕੋਈ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਨਹੀਂ ਹੈ। ਹੋ ਨਹੀਂ ਸਕਦੀ, ਕਿਉਂਕਿ ਦੋਵੇਂ ਸਪੇਸ-ਸ਼ਿਪ ਦੋਵਾਂ ਦਰਮਿਆਨ ਇੱਕ ਵਧ ਰਹੀ ਦੂਰੀ ਨਾਪਦੇ ਹਨ। ਕਿਉਂਕਿ ਸਪੇਸ-ਸ਼ਿਪਾਂ ਦੀ ਕੋਈ ਸਾਂਝੀ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਨਹੀਂ ਹੁੰਦੀ, ਇਸਲਈ ਡੋਰੀ ਦੀ ਲੰਬਾਈ ਗਲਤ-ਪਰਿਭਾਸ਼ਿਤ ਹੁੰਦੀ ਹੈ। ਹੋਰ ਤਾਂ ਹੋਰ, ਨਤੀਜਾ ਸਹੀ ਹੈ, ਅਤੇ ਤਰਕ ਵੀ ਜਿਆਦਾਤਰ ਸਹੀ ਹੀ ਹੈ। ਦੂਜਾ ਤਰਕ, ਫੇਰ ਵੀ, ਤਤਕਾਲੀਨਤਾ ਦੀ ਸਪੇਖਿਕਤਾ ਨੂੰ ਪੂਰੀ ਤਰਾਂ ਰੱਦ ਕਰਦਾ ਹੈ।[34]: 106, 120–122 ਵ
ਇੱਕ ਸਪੇਸਟਾਈਮ ਡਾਇਗ੍ਰਾਮ (ਚਿੱਤਰ. 4‑5) ਇਸ ਪਹੇਲੀ ਪ੍ਰਤਿ ਸਹੀ ਹੱਲ ਨੂੰ ਤਕਰੀਬਨ ਤੁਰੰਤ ਸਬੂਤ ਦੇ ਤੌਰ ਤੇ ਦਿੰਦਾ ਹੈ। ਮਿੰਕੋਵਸਕੀ ਸਪੇਸਟਾਈਮ ਅੰਦਰ ਦੋ ਔਬਜ਼ਰਵਰ, ਪ੍ਰੌਪਰ ਟਾਈਮ ਵਾਸਤੇ, ਸਥਿਰ ਮੁੱਲ ਪ੍ਰਵੇਗ ਨਾਲ ਪ੍ਰਵੇਗਿਤ ਹੁੰਦੇ ਹਨ (ਪ੍ਰਵੇਗ ਅਤੇ ਬੀਤਿਆ ਸਮਾਂ ਖੁਦ ਔਬਜ਼ਰਵਰਾਂ ਰਾਹੀਂ ਨਾਪਿਆ ਜਾਂਦਾ ਹੈ, ਨਾ ਕਿ ਕਿਸੇ ਇਨ੍ਰਸ਼ੀਅਲ ਔਬਜ਼ਰਵਰ ਰਾਹੀਂ)। ਉਹ ਇਸ ਫੇਜ਼ ਤੋਂ ਪਹਿਲਾਂ ਅਤੇ ਬਾਦ ਵਿੱਚ ਸਹਿਗਤੀਸ਼ੀਲ ਅਤੇ ਇਨ੍ਰਸ਼ੀਅਲ ਹੁੰਦੇ ਹਨ। ਮਿੰਕੋਵਸਕੀ ਰੇਖਾਗਣਿਤ ਅੰਦਰ, ਸਪੇਸ-ਲਾਈਕ ਹਿੱਸੇ ਦੀ ਲੰਬਾਈ, ਹਿੱਸੇ ਦੀ ਲੰਬਾਈ ਨਾਲ਼ੋਂ ਵੱਧ ਨਿਕਲਦੀ ਹੈ।
ਲੰਬਾਈ ਦੇ ਵਾਧੇ ਨੂੰ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਮੱਦਦ ਨਾਲ ਕੈਲਕੁਲੇਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਜੇਕਰ, ਜਿਵੇਂ ਚਿੱਤਰ. 4‑5 ਵਿੱਚ ਸਮਝਾਇਆ ਗਿਆ ਹੈ, ਪ੍ਰਵੇਗ ਮੁੱਕ ਗਿਆ ਹੋਵੇ, ਤਾਂ ਸ਼ਿਪ ਕਿਸੇ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਅੰਦਰ ਇੱਕ ਸਥਿਰ ਸ਼ੁਰੂਆਤੀ ਬਿੰਦੂ ਉੱਤੇ ਰਹਿਣਗੇ ਜੇਕਰ ਅਤੇ ਸ਼ਿਪਾਂ ਦੀਆਂ ਅੰਦਰ ਪੁਜੀਸ਼ਨਾਂ ਹੋਣ, ਤਾਂ ਫ੍ਰੇਮ ਵਿੱਚ ਪੁਜਿਸ਼ਨਾਂ ਇਹ ਹੁੰਦੀਆਂ ਹਨ:[43]
ਪਹੇਲੀ, ਜਿਵੇਂ ਇਹ ਸੀ।, ਇਸ ਤਰੀਕੇ ਤੋਂ ਬਣਦੀ ਹੈ ਕਿ ਬੈੱਲ ਨੇ ਅਪਣੀ ਉਦਾਹਰਨ ਇਸਤਰਾਂ ਰਚੀ। ਲੌਰੰਟਜ਼ ਕੰਟ੍ਰੈਕਸ਼ਨ ਦੀ ਆਮ ਚਰਚਾ ਵਿੱਚ, ਰੈਸਟ ਲੰਬਾਈ ਫਿਕਸ ਕਰ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ ਅਤੇ ਗਤੀਸ਼ੀਲ ਲੰਬਾਈ ਫ੍ਰੇਮ ਅੰਦਰੋਂ ਨਾਪਣ ਤੇ ਘਟੀ ਮਿਲਦੀ ਹੈ। ਜਿਵੇਂ ਚਿੱਤਰ. 4‑5 ਵਿੱਚ ਦਿਖਾਇਆ ਗਿਆ ਹੈ, ਬੈੱਲ ਦੀ ਉਦਾਹਰਨ ਗਤੀਸ਼ੀਲ ਲੰਬਾਈਆਂ ਅਤੇ ਨੂੰ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਵਿੱਚ ਨਾਪੇ ਜਾਣ ਤੇ ਠੀਕ ਕਰਨਾ ਮੰਗਦੀ ਹੈ, ਜਿਸ ਨਾਲ ਰੈਸਟ ਫ੍ਰੇਮ ਲੰਬਾਈ ਨੂੰ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਅੰਦਰ ਵਧਣ ਲਈ ਮਜ਼ਬੂਰ ਕਰ ਦਿੰਦੀ ਹੈ। ਜਾਣ-ਪਛਾਣ ਵੱਲ ਪਰਤੋ
ਹੌਰਿਜ਼ਨ ਵਾਲਾ ਪ੍ਰਵੇਗਿਤ ਔਬਜ਼ਰਵਰ
[ਸੋਧੋ]
ਕੁੱਝ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਸਮੱਸਿਆ ਪ੍ਰਬੰਧ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਨਾਲ ਜੁੜੇ ਆਮ ਵਰਤਾਰਿਆਂ ਬਾਬਤ ਗਹਿਰੀ ਸਮਝ ਵੱਲ ਪ੍ਰੇਰਣਾ ਦੇ ਸਕਦੇ ਹਨ, ਜਿਵੇਂ ਈਵੈਂਟ ਹੌਰਿਜ਼ਨ। ਚਿੱਤਰ. 2‑7 ਦੇ ਸਹਿਯੋਗੀ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਅਸੀਂ ਨੋਟ ਕਰ ਚੁੱਕੇ ਹਾਂ ਕਿ ਗੁਲਾਬੀ ਰੰਬ ਦੇ ਹਾਇਪ੍ਰਬੋਲੇ ਉਹਨਾਂ ਵਾਸਤਵਿਕ ਰਸਤਿਆਂ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਦੇ ਹਨ ਜੋ ਸਪੇਸਟਾਈਮ ਅੰਦਰ ਕਿਸੇ ਸਥਿਰ ਪ੍ਰਵੇਗ ਵਾਲੇ ਯਾਤਰੀ ਦੁਆਰਾ ਤੈਅ ਕੀਤੇ ਜਾਂਦੇ ਹਨ। ਪੌਜ਼ਟਿਵ ਪ੍ਰਵੇਗ ਦੇ ਵਕਤਾਂ ਦੌਰਾਨ, ਯਾਤਰੀ ਦੀ ਵਿਲੌਸਿਟੀ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਦੇ ਬਹੁਤ ਨਜ਼ਦੀਕ ਪਹੁੰਚ ਜਾਂਦੀ ਹੈ, ਜਦੋਂਕਿ, ਸਾਡੇ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਵਿੱਚ ਨਾਪੇ ਜਾਣ ਤੇ, ਯਾਤਰੀ ਦਾ ਪ੍ਰਵੇਗ ਸਥਿਰ ਤੌਰ ਤੇ ਘਟਦਾ ਜਾਂਦਾ ਹੈ।
ਚਿੱਤਰ. 4‑6 ਹੋਰ ਵਿਸ਼ੇਸ਼ਤਾ ਨਾਲ ਯਾਤਰੀ ਦੀਆਂ ਗਤੀਆਂ ਦੇ ਵਿਭਿੰਨ ਲੱਛਣਾਂ ਦਾ ਵੇਰਵਾ ਦਿੰਦਾ ਹੈ। ਕਿਸੇ ਦਿੱਤੇ ਹੋਏ (ਸਮੇਂ ਦੇ) ਪਲ ਉੱਤੇ, ਉਸਦਾ ਸਪੇਸ-ਧੁਰਾ ਹਾਇਪ੍ਰਬੋਲੇ ਉੱਤੇ ਉਸਦੀ ਤਾਜ਼ਾ ਪੁਜ਼ੀਸ਼ਨ ਅਤੇ ਮੂਲ ਬਿੰਦੂ ਰਾਹੀਂ ਗੁਜ਼ਰਨ ਵਾਲੀ ਰੇਖਾ ਦੁਆਰਾ ਰਚਿਆ ਜਾਂਦਾ ਹੈ, ਜਦੋਂਕਿ ਉਸਦਾ ਟਾਈਮ-ਧੁਰਾ ਉਸਦੀ ਪੁਜੀਸ਼ਨ ਉੱਤੇ ਦੇ ਹਾਇਪ੍ਰਬੋਲੇ ਪ੍ਰਤਿ ਸਪਰਸ਼ ਰੇਖਾ ਹੁਂਦੀ ਹੈ। ਵਿਲੌਸਿਟੀ ਪੈਰਾਮੀਟਰ ਇੱਕ ਦੀ ਸੀਮਾ ਤੱਕ ਪਹੁੰਚ ਜਾਂਦਾ ਹੈ ਜਿਵੇਂ ਹੀ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਇਸੇਤਰਾਂ, ਦਾ ਮੁੱਲ ਅਨੰਤ (ਇਨਫਿਨਟੀ) ਤੱਕ ਪਹੁੰਚ ਜਾਂਦਾ ਹੈ।
ਇਨਵੇਰੀਅੰਟ ਹਾਇਪ੍ਰਬੋਲੇ ਦੀ ਸ਼ਕਲ ਸਥਿਰ ਪ੍ਰੌਪਰ ਪ੍ਰਵੇਗ ਦੇ ਕਿਸੇ ਰਸਤੇ ਨਾਲ ਸਬੰਧਤ ਹੁੰਦੀ ਹੈ। ਇਸਨੂੰ ਇਸਤਰਾਂ ਸਾਬਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ:
- ਸਾਨੂੰ ਯਾਦ ਹੈ ਕਿ ਹੁੰਦਾ ਹੈ।
- ਕਿਉਂਕਿ ਹੁੰਦਾ ਹੈ, ਇਸਲਈ ਅਸੀਂ ਇਹ ਨਤੀਜਾ ਕੱਢਦੇ ਹਾਂ ਕਿ ਹੁੰਦਾ ਹੈ।
- ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਫੋਰਸ ਨਿਯਮ ਤੋਂ, ਹੁੰਦਾ ਹੈ।
- ਨੂੰ ਕਦਮ 2 ਤੋਂ ਭਰਦੇ ਹੋਏ ਅਤੇ ਕਦਮ 3 ਤੋਂ ਵਾਸਤੇ ਸਮੀਕਰਨ ਨੂੰ ਭਰਦੇ ਹੋਏ ਮਿਲਦਾ ਹੈ ਜੋ ਇੱਕ ਸਥਿਰ ਸਮੀਕਰਨ ਹੈ।[32]: 110–113
ਚਿੱਤਰ. 4‑6 ਇੱਕ ਵਿਸ਼ੇਸ਼ ਤੌਰ ਤੇ ਕੈਲਕੁਲੇਟ ਕੀਤਾ ਹੋਇਆ ਸੀਨਾਰੀਓ ਦਿਖਾਉਂਦਾ ਹੈ। ਟੇਰੈਂਸ (A) ਅਤੇ ਸਟੈੱਲਾ (B) ਸ਼ੁਰੂ ਵਿੱਚ ਮੂਲ ਬਿੱਦੂ ਤੋਂ 100 ਪ੍ਰਕਾਸ਼ ਘੰਟਿਆਂ ਉੱਤੇ ਇਕੱਠੇ ਖੜੇ ਹੁੰਦੇ ਹਨ। ਸਟੈੱਲਾ 0 ਵਕਤ ਉੱਤੇ ਅਪਣੇ ਸਪੇਸ-ਕ੍ਰਾਫਟ ਨੂੰ 0.01 c ਪ੍ਰਤਿ ਘੰਟੇ ਦੇ ਪ੍ਰਵੇਗ ਤੇ ਸਟਾਰਟ ਕਰਦੀ ਹੈ। ਹਰੇਕ ਵੀਹ ਘੰਟਿਆਂ ਉੱਤੇ, ਟੇਰੈਂਸ ਸਟੈੱਲਾ ਨੂੰ ਘਰ (ਠੋਸ ਹਰੀਆਂ ਰੇਖਾਵਾਂ) ਉੱਤੇ ਬੈਠਾ ਜਾਂ (ਬੈਠੀ) ਜਾਣਕਾਰੀ ਰੇਡੀਓ ਸਿਗਨਲ ਭੇਜ ਕੇ ਅਪਡੇਟ ਕਰਦਾ (ਜਾਂ ਕਰਦੀ) ਹੈ। ਸਟੈੱਲਾ ਇਹਨਾਂ ਨਿਯਮਤ (ਰੈਗੁਲਰ) ਪ੍ਰਸਾਰਾਂ (ਟ੍ਰਾਂਸਮਿਸ਼ਨਾਂ) ਨੂੰ ਰੀਸੀਵ (ਪ੍ਰਾਪਤ) ਕਰਦੀ ਹੈ, ਪਰ ਵਧ ਰਿਹਾ (ਸਮਾਂ ਦੇਰੀ ਰਾਹੀਂ ਹਿੱਸੇ ਵਿੱਚ ਸ਼ੁਰੂਆਤੀ ਬਿੰਦੂ ਤੋਂ) ਡਿਸਟੈਂਸ (ਦੂਰੀ) ਉਸਨੂੰ ਟੇਰੈਂਸ ਦੀ ਗੱਲਬਾਤ ਹੋਰ ਬਾਦ ਵਿੱਚ ਰੀਸੀਵ ਕਰਨ ਵਾਸਤੇ ਮਜ਼ਬੂਰ ਕਰਦਾ ਹੈ ਜਿਵੇਂ ਉਸਦੇ ਕਲੌਕ ਤੋਂ ਨਾਪਿਆ ਜਾਂਦਾ ਹੈ, ਅਤੇ ਉਹ ਅਪਣੇ (ਹਰੀਆਂ ਦਾਣੇਦਾਰ ਰੇਖਾਵਾਂ ਵਾਲੇ) ਕਲੌਕ ਉੱਤੇ 100 ਘੰਟਿਆਂ ਬਾਦ ਟੇਰੈਂਸ ਕੋਲੋਂ ਕੋਈ ਵੀ ਸੂਚਨਾ ਰੀਸੀਵ ਨਹੀਂ ਕਰਦੀ।[32]: 110–113
ਟੇਰੈਂਸ ਦੇ ਕਲੌਕ ਮੁਤਾਬਿਕ ਸਮੇਂ ਵਾਲੇ 100 ਘੰਟਿਆਂ ਬਾਦ, ਸਟੈੱਲਾ ਕਿਸੇ ਹਨੇਰੇ ਖੇਤਰ ਵਿੱਚ ਦਾਖਲ ਹੋ ਜਾਂਦੀ ਹੈ। ਉਹ ਟੇਰੈਂਸ ਦੇ ਟਾਈਮ-ਲਾਈਕ ਭਵਿੱਖ ਤੋਂ ਬਾਹਰ ਯਾਤਰਾ ਕਰ ਚੁੱਕੀ ਹੁੰਦੀ ਹੈ। ਦੂਜੇ ਪਾਸੇ, ਟੇਰੈਂਸ ਸਟੈੱਲਾ ਤੋਂ ਅਪਣੇ ਆਪ ਵੱਲ ਅਨਿਸ਼ਚਿਤ ਸਮੇਂ ਤੱਕ ਸੰਦੇਸ਼ਾਂ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨਾ ਜਾਰੀ ਰੱਖਦਾ ਹੈ। ਉਸਨੂੰ ਸਿਰਫ ਕਾਫੀ ਲੰਬਾ ਸਮਾਂ ਉਡੀਕ ਕਰਨੀ ਪੈਂਦੀ ਹੈ। ਸਪੇਸਟਾਈਮ ਨੂੰ ਕਿਸੇ ਸਪੱਸ਼ਟ ਦਿਸਦੇ ਈਵੈਂਟ ਹੌਰਿਜ਼ਨ ਰਾਹੀਂ ਵੱਖਰੇ ਕੀਤੇ ਵੱਖਰੇ ਖੇਤਰਾਂ ਵਿੱਚ ਵੰਡਿਆ ਗਿਆ ਹੈ। ਜਿੰਨੀ ਦੇਰ ਸਟੈੱਲਾ ਪ੍ਰਵੇਗਿਤ ਹੁੰਦੇ ਰਹਿਣਾ ਜਾਰੀ ਰੱਖਦੀ ਹੈ, ਉਹ ਕਦੇ ਵੀ ਜਾਣ ਨਹੀਂ ਪਾਉਂਦੀ ਕਿ ਇਸ ਹੌਰਿਜ਼ਨ ਤੋਂ ਪਰੇ ਕੀ ਹੋ (ਚੱਲਦਾ) ਰਿਹਾ ਹੈ।[32]: 110–113
ਵਕਰਿਤ ਸਪੇਸਟਾਈਮ ਨਾਲ ਜਾਣ-ਪਛਾਣ
[ਸੋਧੋ]
ਮੁਢਲੇ ਕਥਨ
[ਸੋਧੋ]ਨਿਊਟਨ ਦੀਆਂ ਥਿਊਰੀਆਂ ਨੇ ਮੰਨਿਆ ਕਿ ਗਤੀ, ਕਿਸੇ ਰਿਜਿਡ (ਠੋਸ) ਯੁਕਿਲਡਨ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਦੇ ਬੈਕਡ੍ਰੌਪ ਤੋਂ ਵਿਰੁੱਧ ਹੁੰਦੀ ਹੈ ਜੋ ਸਾਰੀ ਸਪੇਸ ਅਤੇ ਸਾਰੇ ਸਮੇਂ ਤੱਕ ਫੈਲਦੀ ਹੈ। ਗਰੈਵਿਟੀ ਦੀ ਇੱਕ ਰਹੱਸਮਈ ਫੋਰਸ ਰਾਹੀਂ ਵਿਚੋਲਗਿਰੀ ਹੁੰਦੀ ਹੈ, ਜੋ ਕਿਸੇ ਦੂਰੀ ਉੱਤੇ ਤਤਕਾਲੀਨ ਕ੍ਰਿਆ ਕਰਦਾ ਹੈ, ਜਿਸਦੇ ਕਾਰਜ ਅੰਦਰੂਨੀ ਸਪੇਸ ਤੋਂ ਸੁਤੰਤਰ ਹੁੰਦੇ ਹਨ।[note 10] ਇਸਦੇ ਤੁੱਲ, ਆਈਨਸਟਾਈਨ ਨੇ ਇਨਕਾਰ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਕਿ ਸਪੇਸ ਤੱਕ ਫੈਲਣ ਵਾਲੀ ਕੋਈ ਬੈਕਗ੍ਰਾਉਂਡ ਯੁਕਿਲਡਨ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਵੀ ਹੁੰਦੀ ਹੈ। ਨਾ ਹੀ ਗਰੈਵੀਟੇਸ਼ਨ ਦੇ ਫੋਰਸ ਦੇ ਰੂਪ ਵਿੱਚ ਹੀ ਕੋਈ ਅਜਿਹੀ ਚੀਜ਼ ਹੁੰਦੀ ਹੈ, ਸਿਰਫ ਸਪੇਸਟਾਈਮ ਦੀ ਅਪਣੀ ਬਣਤਰ ਹੀ ਹੁੰਦੀ ਹੈ।[8]: 175–190
ਸਪੇਸਟਾਈਮ ਨਿਯਮਾਂ ਅੰਦਰ, ਧਰਤੀ ਦੁਆਲ਼ੇ ਚੱਕਰ ਲਾਉਂਦੇ ਕਿਸੇ ਸੈਟੇਲਾਈਟ ਦਾ ਪਥ (ਰਸਤਾ) ਧਰਤੀ, ਚੰਦ੍ਰਮਾ ਅਤੇ ਸੂਰਜ ਦੇ ਦੂਰਸਥਿਤ ਅਸਰਾਂ ਰਾਹੀਂ ਬਿਆਨ ਨਹੀਂ ਹੁੰਦਾ। ਸਗੋਂ, ਸੈਟੇਲਾਈਟ ਸਪੇਸ ਰਾਹੀਂ ਸਿਰਫ ਸਥਾਨਿਕ ਸ਼ਰਤਾਂ (ਕੰਡੀਸ਼ਨਾਂ) ਪ੍ਰਤਿ ਜਵਾਬ ਵਿੱਚ ਹੀ ਗਤੀ ਕਰਦਾ ਹੈ। ਕਿਉਂਕਿ ਸਪੇਸਟਾਈਮ ਹਰੇਕ ਸਥਾਨ ਉੱਤੇ ਸਥਾਨਿਕ ਤੌਰ ਤੇ ਫਲੈਟ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਕਿਸੇ ਕਾਫੀ ਘੱਟ ਪੈਮਾਨੇ ਉੱਤੇ ਲਿਆ ਜਾਣਾ ਹੋਵੇ, ਇਸਲਈ ਸੈਟੇਲਾਈਟ ਹਮੇਸ਼ਾਂ ਹੀ ਅਪਣੀ ਲੋਕਲ ਇਨ੍ਰਸ਼ੀਅਲ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਅੰਦਰ ਇੱਕ ਸਿੱਧੀ ਰੇਖਾ ਅਪਣਾਉਂਦਾ ਹੈ। ਅਸੀਂ ਕਹਿੰਦੇ ਹਾਂ ਕਿ ਸੈਟੇਲਾਈਟ ਹਮੇਸ਼ਾਂ ਹੀ ਕਿਸੇ ਜੀਓਡੈਸਿਕ ਦੇ ਰਸਤੇ ਦੇ ਨਾਲ ਨਾਲ ਰਸਤਾ ਅਪਣਾਉਂਦਾ ਹੈ। ਗਰੈਵੀਟੇਸ਼ਨ ਦੀ ਕੋਈ ਵੀ ਸਬੂਤ ਕਿਸੇ ਸਿੰਗਲ ਕਣ ਦੀਆਂ ਗਤੀਆਂ ਦੇ ਨਾਲ ਨਾਲ ਰਸਤਾ ਅਪਣਾਉਂਦੇ ਹੋਏ ਨਹੀਂ ਖੋਜਿਆ ਜਾ ਸਕਦਾ।[8]: 175–190
ਸਪੇਸਟਾਈਮ ਦੇ ਕਿਸੇ ਵੀ ਵਿਸ਼ਲੇਸ਼ਣ ਵਿੱਚ, ਗਰੈਵੀਟੇਸ਼ਨ ਦੀ ਗਵਾਹੀ ਮੰਗ ਕਰਦੀ ਹੈ ਕਿ ਦੋ ਵਸਤੂਆਂ ਜਾਂ ਦੋ ਵੱਖਰੇ ਕੀਤੇ ਕਣਾਂ ਦੇ ਸਾਪੇਖਿਕ ਪ੍ਰਵੇਗਾਂ ਨੂੰ ਨਿਰੀਖਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਚਿੱਤਰ. 5‑1 ਵਿੱਚ, ਦੋ ਵੱਖਰੇ ਕੀਤੇ ਗਏ ਕਣ, ਜੋ ਧਰਤੀ ਦੀ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਅੰਦਰ ਸੁਤੰਤਰ ਤੌਰ ਤੇ ਡਿੱਗ ਰਹੇ ਹੁੰਦੇ ਹਨ, ਕੁੱਝ ਇਸਤਰਾਂ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਅੰਦਰ ਸਥਾਨਿਕ ਗੈਰ-ਇੱਕਸਾਰਤਾਵਾਂ (ਇਨਹੋਮੋਜੀਨੀਅਟੀਆਂ) ਕਾਰਣ ਬਣੇ ਟਾਈਡਲ ਪ੍ਰਵੇਗਾਂ ਨੂੰ ਪ੍ਰਦ੍ਰਿਸ਼ਤ ਕਰਦੇ ਹਨ, ਕਿ ਹਰੇਕ ਕਣ ਸਪੇਸਟਾਈਮ ਰਾਹੀਂ ਇੱਕ ਵੱਖਰਾ ਰਸਤਾ ਅਪਣਾਉਂਦਾ ਹੈ। ਟਾਈਡਲ ਪ੍ਰਵੇਗ, ਜੋ ਇੱਕ ਦੂਜੇ ਪ੍ਰਤਿ ਇਹ ਕਣ ਪ੍ਰਦ੍ਰਸ਼ਿਤ ਕਰਦੇ ਹਨ, ਇਹਨਾਂ ਦੇ ਵੇਰਵੇ ਵਾਸਤੇ ਫੋਰਸਾਂ ਦੀ ਮੰਗ ਨਹੀਂ ਕਰਦੇ। ਇਸ ਦੀ ਵਜਾਏ, ਆਈਨਸਟਾਈਨ ਨੇ ਸਪੇਸਟਾਈਮ ਦੇ ਰੇਖਾਗਣਿਤ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਇਹਨਾਂ ਨੂੰ ਦਰਸਾਇਆ, ਯਾਨਿ ਕਿ, ਸਪੇਸਟਾਈਮ ਦਾ ਕਰਵੇਚਰ। ਇਹ ਟਾਈਡਲ ਪ੍ਰਵੇਗਸਖਤ ਤੌਰ ਤੇ ਲੋਕਲ ਹੁੰਦੇ ਹਨ। ਇਹ ਕਈ ਸਥਾਨਿਕ ਕਰਵੇਚਰਾਂ ਦੇ ਪ੍ਰਗਟਾਵਾਂ ਦਾ ਇਕੱਠਾ ਕੁੱਲ ਅਸਰ ਹੁੰਦਾ ਹੈ ਜੋ ਧਰਤੀ ਤੋਂ ਕਿਸੇ ਲੰਬੀ ਰੇਂਜ ਉੱਤੇ ਕ੍ਰਿਆਸ਼ੀਲ ਕਿਸੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੋਰਸ ਦੇ ਵਜੋਂ ਦਿਸਣ ਦਾ ਨਤੀਜਾ ਦਿੰਦਾ ਹੈ। [8]: 175–190
ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਪਿੱਛੇ ਦੋ ਕੇਂਦਰੀ ਕਥਨ ਛੁਪੇ ਹਨ।
- ਪਹਿਲਾ ਮਹੱਤਵਪੂਰਨ ਸੰਕਲਪ ਨਿਰਦੇਸ਼ਾਂਕ (ਕੋਆਰਡੀਨੇਟ) ਸੁਤੰਤਰਤਾ ਹੈ: ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੇ ਨਿਯਮ ਕਿਸੇ ਦੁਆਰਾ ਵਰਤੇ ਜਾਣ ਵਾਲੇ “ਕੋ-ਆਰਡੀਨੇਟ ਸਿਸਟਮ” ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਹੋ ਸਕਦੇ। ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ ਵਰਤੇ ਜਾਂਦੇ ਵਰਜ਼ਨ ਤੋਂ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਸਿਧਾਂਤ ਦੀ ਇਹ ਇੱਕ ਪ੍ਰਮੁੱਖ ਸ਼ਾਖਾ ਹੈ, ਜੋ ਬਿਆਨ ਕਰਦੀ ਹੈ ਕਿ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੇ ਨਿਯਮ ਜਰੂਰ ਹੀ ਗੈਰ-ਪ੍ਰਵੇਗਿਤ (ਇਨ੍ਰਸ਼ੀਅਲ) ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ ਅੰਦਰ ਗਤੀਸ਼ੀਲ ਹਰੇਕ ਔਬਜ਼ਰਵਰ ਵਾਸਤੇ ਸਥਿਰ ਰਹਿਣੇ ਚਾਹੀਦੇ ਹਨ। ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ, ਆਈਨਸਟਾਈਨ ਦੇ ਖੁਦ ਦੇ (ਅਨੁਵਾਦ ਕੀਤੇ) ਸ਼ਬਦਾਂ ਨੂੰ ਵਰਤਣ ਲਈ, "ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੇ ਨਿਯਮ ਜਰੂਰ ਹੀ ਅਜਿਹੀ ਫਿਤਰਤ ਦੇ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ ਜੋ ਗਤੀ ਦੀ ਕਿਸੇ ਕਿਸਮ ਅੰਦਰ ਰੈਫ੍ਰੈਂਸ ਦੇ ਸਿਸਟਮਾਂ (ਪ੍ਰਣਾਲੀਆਂ) ਤੇ ਲਾਗੂ ਹੋ ਜਾਂਦੇ ਹੋਣ।"[44]: 113 ਇਹ ਤੁਰੰਤ ਹੀ ਇੱਕ ਮਸਲੇ ਨੂੰ ਜਨਮ ਦਿੰਦਾ ਹੈ: ਪ੍ਰਵੇਗਿਤ ਫ੍ਰੇਮਾਂ ਅੰਦਰ, ਅਜਿਹੇ ਫੋਰਸ ਮਹਿਸੂਸ ਕੀਤੇ ਜਾਂਦੇ ਹਨ ਜੋ ਕਿਸੇ ਸ਼ੁੱਧ ਬੁੱਧੀ ਵਿੱਚ ਪ੍ਰਵੇਗ ਦੀ ਕਿਸੇ ਦੀ ਅਵਸਥਾ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਨਾ ਸੰਭਵ ਕਰਦਾ ਲਗਦਾ ਹੈ। ਆਈਨਸਟਾਈਨ ਨੇ ਇਸ ਸਮੱਸਿਆ ਨੂੰ ਸਮਾਨਤਾ ਸਿਧਾਂਤ ਰਾਹੀਂ ਹੱਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।[45]: 137–149
- ਸਮਾਨਤਾ ਸਿਧਾਂਤ ਬਿਆਨ ਕਰਦਾ ਹੈ ਕਿ ਸਪੇਸ ਦੇ ਕਾਫੀ ਛੋਟੇ ਕਿਸੇ ਵੀ ਖੇਤਰ ਅੰਦਰ, ਗਰੈਵੀਟੇਸ਼ਨ ਦੇ ਅਸਰ ਪ੍ਰਵੇਗ ਤੋਂ ਪੈਦਾ ਹੋਣ ਵਾਲ਼ੇ ਅਸਰ ਵਰਗੇ ਹੀ ਹੁੰਦੇ ਹਨ।
- ਚਿੱਤਰ. 5-2 ਵਿੱਚ, ਇਨਸਾਨ A ਕਿਸੇ ਸਪੇਸ-ਸ਼ਿਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਜੋ ਭਾਰੀ ਵਸਤੂਆਂ ਤੋਂ ਦੂਰ ਹੁੰਦਾ ਹੈ, ਜੋ ਇੱਕ ਇੱਕਸਾਰ g ਦਾ ਪ੍ਰਵੇਗ ਅਨੁਭਵ ਕਰਦਾ ਹੈ। ਇਨਸਾਨ B ਧਰਤੀ ਉੱਤੇ ਠਹਿਰੇ ਕਿਸੇ ਡੱਬੇ ਅੰਦਰ ਹੁੰਦਾ ਹੈ। ਜੇਕਰ ਇਹ ਮੁਹੱਈਆ ਹੋਵੇ ਕਿ ਸਪੇਸ-ਸ਼ਿਪ ਕਾਫੀ ਛੋਟਾ ਹੈ ਤਾਂ ਜੋ ਟਾਈਡਲ ਅਸਰ ਨਾਪੇ ਨਹੀਂ ਜਾ ਸਕਦੇ ਹੋਣ (ਵਰਤਮਾਨ ਗਰੈਵਿਟੀ ਨਾਪ ਉਪਕਰਣਤਾਮਿਕਤਾ ਦੀ ਸਵੇੰਦਨਸ਼ੀਲਤਾ ਦਿੱਤੇ ਹੋਣ ਤੇ, A ਅਤੇ B ਪੂਰਵ-ਧਾਰਨਾ ਦੇ ਤੌਰ ਤੇ ਲਿੱਲੀਪਟੀਅਨ (ਬਹੁਤ ਸੂਖਮ) ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ), ਤਾਂ ਕੋਈ ਵੀ ਪ੍ਰਯੋਗ ਅਜਿਹਾ ਨਹੀਂ ਹੁੰਦਾ ਜੋ A ਅਤੇ B ਰਾਹੀਂ ਕੀਤਾ ਜਾ ਸਕੇ ਜੋ ਉਹਨਾਂ ਨੂੰ ਇਹ ਦੱਸਣ ਦੇ ਯੋਗ ਕਰ ਸਕੇ ਕਿ ਉਹ ਕਿਹੜੀ ਸੈਟਿੰਗ ਵਿੱਚ ਹਨ।[45]: 141–149
- ਸਮਾਨਤਾ ਸਿਧਾਂਤ ਦੀ ਇੱਕ ਬਦਲਵੀਂ ਸਮੀਕਰਨ ਇਹ ਨੋਟ ਕਰਨ ਵਿੱਚ ਹੈ ਕਿ ਗਰੈਵੀਟੇਸ਼ਨ ਦੇ ਨਿਊਟਨ ਦੇ ਬ੍ਰਹਿਮੰਡੀ ਨਿਯਮ ਵਿੱਚ, F = GMmg /r2 = mgg ਹੁੰਦਾ ਹੈ ਅਤੇ ਨਿਊਟਨ ਦੇ ਦੂਜੇ ਨਿਯਮ ਵਿੱਚ, F = m ia ਹੁੰਦਾ ਹੈ, ਕੋਈ a ਪੂਰਵ ਕਾਰਨ ਨਹੀਂ ਹੁੰਦਾ ਕਿ ਕਿਉਂ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪੁੰਜ mg ਇਨ੍ਰਸ਼ੀਅਲ ਪੁੰਜ m i ਦੇ ਬਰਾਬਰ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਸਮਾਨਤਾ ਸਿਧਾਂਤ ਬਿਆਨ ਕਰਦਾ ਹੈ ਕਿ ਇਹ ਦੋਵੇਂ ਪੁੰਜ ਇੱਕੋ ਜਿਹੇ ਹੀ ਹੁੰਦੇ ਹਨ।[45]: 141–149
ਵਕਰਿਤ ਸਪੇਸਟਾਈਮ ਦੇ ਉੱਪਰ ਵਿਵਰਿਤ ਮੁਢੈ ਵੇਰਵੇ ਤੋਂ ਗਰੈਵੀਟੇਸ਼ਨ ਦੇ ਇੱਕ ਸੰਪੂਰਣ ਵਿਵਰਣ ਤੱਕ ਜਾਣ ਵਾਸਤੇ ਟੈਂਸਰ ਕੈਲਕੁਲਸ ਅਤੇ ਡਿਫ੍ਰੈਂਸ਼ੀਅਲ ਜੀਓਮੈਟ੍ਰੀ ਦੀ ਲੋੜ ਪੈਂਦੀ ਹੈ, ਜੋ ਦੋਵੇਂ ਹੀ ਅਜਿਹੇ ਪ੍ਰਸੰਗ ਹਨ, ਜੋ ਵਿਚਾਰਨਯੋਗ ਅਧਿਐਨ ਮੰਗਦੇ ਹਨ। ਇਹਨਾਂ ਗਣਿਤਿਕ ਔਜ਼ਾਰਾਂ ਤੋਂ ਬਗੈਰ, ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਬਾਬਤ ਲਿਖਣਾ ਤਾਂ ਸੰਭਵ ਹੈ, ਪਰ ਕੋਈ ਗੈਰ-ਸੂਖਮ ਵਿਓਂਤਬੰਦੀ ਨੂੰ ਸਾਬਤ ਕਰਨਾ ਸੰਭਵ ਨਹੀਂ ਹੈ।
ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਬਾਬਤ ਸਾਪੇਖਿਕ ਤੌਰ ਤੇ ਇੱਕ (ਅਜੇ ਇੱਕ ਹੋਰ) ਗੈਰ-ਗਣਿਤਿਕ ਪੇਸ਼ਕਸ਼ ਪ੍ਰਸਤਾਵਿਤ ਕਰਨ ਲਈ ਯਤਨ ਕਰ ਰਹੇ ਇਸ ਹਿੱਸੇ ਦੀ ਜਗਹ, ਪਾਠਕ ਨੂੰ ਚੁਣੇ ਹੋਏ ਵਿਕੀਪੀਡੀਆ ਲੇਖ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਨਾਲ ਜਾਣ-ਪਛਾਣ ਅਤੇ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਪੜਨ ਵੱਲ ਇਸ਼ਾਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸਦੀ ਜਗਹ, ਇਸ ਹਿੱਸੇ ਵਿੱਚ ਧਿਆਨ ਦਾ ਕੇਂਦਰ, ਅਜਿਹੇ ਮੁੱਠੀ ਭਰ ਮੁਢਲੇ ਸੀਨਾਰੀਓਆਂ ਨੂੰ ਫਰੋਲਣਾ ਰਹੇਗਾ ਜੋ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਸਵਾਦ ਦਾ ਕੁੱਝ ਨਾ ਕੁੱਝ ਸਵਾਦ ਦੇਣ ਦੀ ਭੂਮਿਕਾ ਨਿਭਾਏਗਾ। ਜਾਣ-ਪਛਾਣ ਵੱਲ ਪਰਤੋ
ਸਮੇਂ ਦਾ ਕਰਵੇਚਰ
[ਸੋਧੋ]ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ
ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਚਰਚਾ ਵਿੱਚ, ਫੋਰਸ, ਕਿਸੇ ਬੈਕਗ੍ਰਾਊਂਡ ਤੋਂ ਜਿਆਦਾ ਹੋਰ ਕੋਈ ਭੂਮਿਕਾ ਨਹੀਂ ਅਦਾ ਕਰਦੇ। ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਸਾਰਾ ਸਪੇਸਟਾਈਮ ਭਰਨ ਵਾਲੀਆਂ ਇਨ੍ਰਸ਼ੀਅਲ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਦੀ ਯੋਗਤਾ ਰੱਖਦੀ ਹੈ, ਜਿਹਨਾਂ ਦੇ ਸਾਰੇ ਕਲੌਕ ਮੂਲ ਬਿੰਦੂ ਉੱਤੇ ਵਾਲੇ ਕਲੌਕਾਂ ਦੇ ਚੱਲਣ ਦੀ ਦਰ ਨਾਲ ਹੀ ਚਲਦੇ ਹਨ। ਕੀ ਇਹ ਸੱਚਮੁਚ ਸੰਭਵ ਹੈ? ਕਿਸੇ ਗੈਰ-ਇੱਕਸਾਰ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਅੰਦਰ, ਪ੍ਰਯੋਗ ਬੋਲਦੇ ਹਨ ਕਿ ਜਵਾਬ ਨਾਂਹ ਹੈ। ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡਾਂ ਕਿਸੇ ਗਲੋਬਲ ਇਨ੍ਰਸ਼ੀਅਲ ਫ੍ਰੇਮ ਦੀ ਰਚਨਾ ਕਰਨ ਨੂੰ ਅਸੰਭਵ ਬਣਾਉਂਦੀਆਂ ਹਨ। ਸਪੇਸਟਾਈਮ ਦੇ ਬਹੁਤ ਛੋਟੇ ਖੇਤਰਾਂ ਅੰਦਰ, ਲੋਕਲ ਇਨ੍ਰਸ਼ੀਅਲ ਫ੍ਰੇਮਾਂ ਅਜੇ ਵੀ ਸੰਭਵ ਹਨ। ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਕਿਸੇ ਹੋਰ ਜਿਆਦਾ ਸਰਵ ਸਧਾਰਨ ਸਪੇਸਟਾਈਮ ਦੀ ਤਸਵੀਰ ਵਿੱਚ ਇਹਨਾਂ ਲੋਕਲ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ ਦੀ ਇੱਕਠੀ ਵਿਵਸਥਿਤ ਸਟਿਚਿੰਗ ਸ਼ਾਮਿਲ ਕਰਦੀ ਹੈ।[28]: 118–126
1916 ਵਿੱਚ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਪ੍ਰਕਾਸ਼ਨ ਤੋਂ ਕੁੱਝ ਦੇਰ ਬਾਦ ਹੀ, ਬਹੁਤ ਸਾਰੇ ਵਿਗਿਆਨੀਆਂ ਨੇ ਇਸ਼ਾਰਾ ਕੀਤਾ ਕਿ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਗਰੈਵੀਟੇਸ਼ਨਲ ਰੈੱਡ-ਸ਼ਿਫਟ ਦੀ ਹੋਂਦ ਅਨੁਮਾਨਿਤ ਕਰਦੀ ਹੈ। ਆਈਨਸਟਾਈਨ ਨੇ ਖੁਦ ਵੀ ਅੱਗੇ ਲਿਖਿਆ ਸੋਚ ਪ੍ਰਯੋਗ ਸੁਝਾਇਆ: (i) ਮੰਨ ਲਓ ਕਿ ਉੱਚਾਈ h (ਚਿੱਤਰ. 5‑3) ਵਾਲਾ ਕੋਈ ਖੰਭਾ (ਟਾਵਰ) ਬਣਾਇਆ ਗਿਆ ਹੈ। (ii) ਟਾਵਰ ਦੇ ਸ਼ਿਖਰ ਤੋਂ ਰੈਸਟ ਪੁੰਜ m ਵਾਲਾ ਕੋਈ ਕਣ ਥੱਲੇ ਸੁੱਟੋ। ਇਹ ਪ੍ਰਵੇਗ g ਸਮੇਤ ਸੁਤੰਤਰਤਾ ਨਾਲ ਥੱਲੇ ਡਿੱਗਦਾ ਹੈ, ਤੇ ਜਮੀਨ ਤੇ ਵਿਲੌਸਿਟੀ v = (2gh)1/2 ਨਾਲ ਥੱਲੇ ਪਹੁੰਚਦਾ ਹੈ, ਤਾਂ ਜੋ ਇਸਦੀ ਕੁੱਲ ਊਰਜਾ E, ਜਿਵੇਂ ਜਮੀਨ ਉੱਤੇ ਕਿਸੇ ਔਬਜ਼ਰਵਰ ਰਾਹੀਂ ਨਾਪੀ ਜਾਣੀ ਹੁੰਦੀ ਹੈ, m = ½mv2/c2 = m + mgh/c2 ਹੁੰਦਾ ਹੈ। (iii) ਇੱਕ ਪੁੰਜ-ਊਰਜਾ ਕਨਵਰਟਰ (ਪਰਿਵਰਤਕ) ਕਣ ਦੀ ਕੁੱਲ ਊਰਜਾ ਨੂੰ ਇੱਕੋ ਸਿੰਗਲ ਉੱਚ-ਊਰਜਾ ਵਾਲੇ ਫੋਟੋਨ ਵਿੱਚ ਤਬਦੀਲ ਕਰ ਦਿੰਦਾ ਹੈ, ਜਿਸਨੂੰ ਇਹ ਉੱਪਰਵੱਲ ਦੀ ਦਿਸ਼ਾ ਦੇ ਦਿੰਦਾ ਹੈ। (iv) ਟਾਵਰ ਦੇ ਸ਼ਿਖਰ ਉੱਤੇ, ਇੱਕ ਊਰਜਾ-ਪੁੰਜ ਪਰਿਵਰਤਕ ਫੋਟੋਨ ਦੀ E' ਊਰਜਾ ਨੂੰ ਵਾਪਿਸ ਇੱਕ ਰੈਸਟ ਪੁੰਜ m' ਵਾਲੇ ਕਣ ਵਿੱਚ ਰੂਪਾਂਤ੍ਰਿਤ ਕਰ ਦਿੰਦਾ ਹੈ।[28]: 118–126
ਜਰੂਰ ਹੀ m = m' ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਕਿਉਂਕਿ ਨਹੀਂ ਤਾਂ ਕੋਈ ਪਰਪਚੁਅਲ ਮੋਸ਼ਨ ਯੰਤਰ ਰਚਣਾ ਸੰਭਵ ਹੋ ਸਕਣਾ ਸੀ। ਅਸੀਂ ਇਸਲਈ ਅਨੁਮਾਨ ਲਗਾਉਂਦੇ ਹਾਂ ਕਿ E' = m ਹੋਵੇਗਾ, ਤਾਂ ਜੋ
ਧਰਤੀ ਦੀ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਵਿੱਚ ਉੱਪਰ ਚੜ ਰਿਹਾ ਕੋਈ ਫੋਟੋਨ ਊਰਜਾ ਖੋ ਦਿੰਦਾ ਹੈ ਅਤੇ ਰੈਡ-ਸ਼ਿਫਟ ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ। ਖਗੋਲ-ਸ਼ਾਸਤਰਾਤਮਿਕ ਨਿਰੀਖਣਾਂ ਸਦਕਾ, ਇਸ ਰੈੱਡ-ਸ਼ਿਫਟ ਨੂੰ ਨਾਪਣ ਦੇ ਸ਼ੁਰੂਆਤੀ ਯਤਨ ਕੁੱਝ ਨਾ ਕੁੱਝ ਅਨਿਰਣਾਤਮਿਕ ਸਨ, ਪਰ ਨਿਸ਼ਚਿਤ ਨਤੀਜਾ ਦੇਣ ਵਾਲੇ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਨਿਰੀਖਣ ਪਾਉਂਡ ਅਤੇ ਰੇਬਕਾ (1959) ਅਤੇ ਬਾਦ ਵਿੱਚ ਪਾਉਂਡ ਅਤੇ ਸਨਿਡਰ (1964) ਰਾਹੀਂ ਕੀਤੇ ਗਏ ਸਨ।[46]
ਪ੍ਰਕਾਸ਼ ਨਾਲ ਇੱਕ ਸਬੰਧਤ ਫ੍ਰੀਕੁਐਂਸੀ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਇਹ ਫ੍ਰੀਕੁਐਂਸੀ ਕਿਸੇ ਕਲੌਕ ਦੀ ਕਸਾਰਜਪ੍ਰਣਾਲੀ ਚਲਾਉਣ ਲਈ ਵਰਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਗਰੈਵੀਟੇਸ਼ਨਲ ਰੈੱਡ-ਸ਼ਿਫਟ ਖੁਦ ਹੀ ਵਕਤ ਬਾਬਤ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਨਤੀਜੇ ਵੱਲ ਪ੍ਰੇਰਿਤ ਕਰਦੀ ਹੈ: ਗਰੈਵਿਟੀ ਵਕਤ ਨੂੰ ਧੀਮਾ ਕਰਦੀ ਹੈ। ਮੰਨ ਲਓ ਅਸੀਂ ਦੋ ਇੱਕ ਜਿਹੇ ਅਜਿਹੇ ਕਲੌਕ ਬਣਾਉਂਦੇ ਹਾਂ ਜਿਹਨਾਂ ਦੀਆਂ ਦਰਾਂ ਕਿਸੇ ਸਥਿਰ ਐਟੌਮਿਕ ਟ੍ਰਾਂਜ਼ੀਸ਼ਨ ਸਦਕਾ ਨਿਯੰਤ੍ਰਿਤ ਹੁੰਦੀਆਂ ਹੋਣ। ਇੱਕ ਲੌਕ ਨੂੰ ਟਾਵਰ ਦੇ ਸਿਖਰ ਤੇ ਰੱਖ ਦਿਓ, ਜਦੋਂਕਿ ਦੂਜੇ ਕਲੌਕ ਨੂੰ ਧਰਤੀ ਤੇ ਪਿਆ ਰਹਿਣ ਦਿਓ। ਟਾਵਰ ਦੇ ਸ਼ਖਰ ਉੱਤੇ ਕੋਈ ਪ੍ਰਯੋਗਕਰਤਾ ਨਿਰੀਖਣ ਕਰਦਾ ਹੈ ਕਿ ਧਰਤੀ ਵਾਲੇ ਕਲੌਕ ਤੋਂ ਸਿਗਨਲ, ਟਾਵਰ ਦੇ ਉੱਤੇ ਵਾਲੇ ਉਸਦੇ ਕਲੌਕ ਵਾਲੀ ਫ੍ਰੀਕੁਐਂਸੀ ਤੋਂ ਘੱਟ ਫ੍ਰੀਕੁਐਂਸੀ ਵਿੱਚ ਹੈ। ਟਾਵਰ ਤੱਕ ਜਾਣ ਵਾਲਾ ਪ੍ਰਕਾਸ਼ ਸਿਰਫ ਇੱਕ ਤਰੰਗ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਤਰੰਗਾਂ ਦੀਆਂ ਕ੍ਰੈੱਸਟਾਂ (ਉਛਾਲ਼ਾਂ) ਵਾਸਤੇ ਰਸਤੇ ਵਿੱਚ ਅਲੋਪ ਹੋ ਜਾਣਾ ਅਸੰਭਵ ਹੁੰਦਾ ਹੈ। ਪ੍ਰਕਾਸ਼ ਦੀਆਂ ਜਿੰਨੀਆਂ ਵੀ ਔਸੀਲੇਸ਼ਨਾਂ ਟਾਵਰ ਦੇ ਸ਼ਿਖਰ ਤੇ ਪਹੁੰਚਦੀਆਂ ਹਨ ਉਹ ਉੱਨੀਆਂ ਹੀ ਹੁੰਦੀਆਂ ਹਨ ਜਿੰਨੀਆਂ ਤਲ ਉੱਤੇ ਧਰਤੀ ਤੋਂ ਕੱਢੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਪ੍ਰਯੋਗ-ਕਰਤਾ ਨਤੀਜਾ ਕੱਢਦਾ ਹੈ ਕਿ ਧਰਤੀ ਵਾਲਾ ਕਲੌਕ ਧੀਮਾ ਚੱਲ ਰਿਹਾ ਹੈ, ਅਤੇ ਉਹ ਧਰਤੀ ਵਾਲੇ ਕਲੌਕ ਦੇ ਨਾਲ ਨਾਲ ਤੁਲਨਾ ਕਰਨਾ ਲਈ ਟਾਵਰ ਦੇ ਕਲੌਕ ਨੂੰ ਥੱਲੇ ਲਿਆ ਕੇ ਸਾਬਤ ਕਰ ਸਕਦਾ ਹੈ।[17]: 16–18 ਕਿਸੇ 1 km ਟਾਵਰ ਲਈ, ਬੇਮੇਲਤਾ ਤਕਰੀਬਨ 9.4 ਨੈਨੋ-ਸਕਿੰਟ ਪ੍ਰਤਿਦਿਨ ਹੁੰਦੀ ਹੈ, ਜੋ ਅਜੋਕੇ ਉਪਕਰਣਾਂ ਨਾਲ ਅਸਾਨੀ ਨਾਲ ਨਾਪਣਯੋਗ ਹੁੰਦੀ ਹੈ।
ਕਿਸੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਅੰਦਰ ਕਲੌਕ ਸਾਰੇ ਹੀ ਇੱਕੋ ਦਰ ਨਾਲ ਨਹੀਂ ਭੱਜਦੇ। ਪ੍ਰਯੋਗਾਂ, ਜਿਵੇਂ ਪਾਉਂਡ-ਰੇਬਕਾ ਪ੍ਰਯੋਗ, ਨੇ ਠੋਸ ਤੌਰ ਤੇ ਸਪੇਸਟਾਈਮ ਦੇ ਸਮਾਂ ਕੰਪੋਨੈਂਟ ਦਾ ਕਰਵੇਚਰ ਸਥਾਪਿਤ ਕਰ ਲਿਆ ਹੈ। ਪਾਉਂਡ-ਰੇਬਕਾ ਪ੍ਰਯੋਗ, ਸਪੇਸਟਾਈਮ ਦੇ ਸਿਸਟਮ ਕੰਪੋਨੈਂਟ ਦੇ ਕਰਵੇਚਰ ਬਾਰੇ ਕੁੱਝ ਨਹੀਂ ਕਹਿੰਦਾ ਹੈ। ਪਰ ਨੋਟ ਕਰੋ ਕਿ ਗਰੈਵੀਟੇਸ਼ਨਲ ਸਮਾਂ ਦੇਰੀ ਅਨੁਮਾਨ ਲਗਾਉਣ ਵਾਲੇ ਸਿਧਾਂਤਿਕ ਤਰਕ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਉੱਤੇ ਉੱਕਾ ਹੀ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦੇ। ਗਰੈਵਿਟੀ ਦੀ ਕੋਈ ਵੀ ਥਿਊਰੀ ਗਰੈਵੀਟੇਸ਼ਨਲ ਸਮਾਂ ਦੇਰੀ ਅਨੁਮਾਨਿਤ ਕਰੇਗੀ ਜੇਕਰ ਇਹ ਸਮਾਨਤਾ ਸਿਧਾਂਤ ਦੀ ਪਾਲਣਾ ਕਰਦੀ ਹੋਵੇ।[17]: 16 ਇਸ ਵਿੱਚ ਨਿਊਟੋਨੀਅਨ ਗਰੈਵੀਟੇਸ਼ਨ ਸ਼ਾਮਿਲ ਹੈ। ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ ਇੱਕ ਮਿਆਰੀ ਪ੍ਰਦ੍ਰਸ਼ਨ ਇਹ ਦਿਖਾਉਣ ਲਈ ਹੈ ਕਿ ਕਿਵੇਂ, ਨਿਊਟੋਨੀਅਨ ਹੱਦ (ਯਾਨਿ ਕਿ, ਜਦੋਂ ਕਣ ਧੀਮਾ ਗਤੀ ਕਰਦੇ ਹਨ, ਤਾਂ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਕਮਜ਼ੋਰ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਫੀਲਡ ਸਥਿਰ ਰਹਿੰਦੀ ਹੈ), ਸਮੇਂ ਦਾ ਕਰਵੇਚਰ ਇਕੱਲਾ ਹੀ ਗਰੈਵਿਟੀ ਦਾ ਨਿਊਟਨ ਦਾ ਨਿਯਮ ਵਿਓਂਤਬੰਦ ਕਰਨ ਲਈ ਕਾਫੀ ਹੈ।[47]: 101–106
ਨਿਊਟੋਨੀਅਨ ਗਰੈਵੀਟੇਸ਼ਨ ਵਕਰਿਤ ਸਮੇਂ ਦੀ ਇੱਕ ਥਿਊਰੀ ਹੈ। ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਕਰਿਤ ਸਮੇਂ ਅਤੇ ਵਕਰਿਤ ਸਪੇਸ ਦੀ ਇੱਕ ਥਿਊਰੀ ਹੈ। ਗਰੈਵੀਟੇਸ਼ਨਲ ਸਥਿਰਾਂਕ G, ਇੱਕ ਨਿਊਟੋਨੀਅਨ ਤਾਰੇ ਦੇ ਪੁੰਜ ਦੇ ਤੌਰ ਤੇ M, ਅਤੇ ਤਾਰੇ ਤੋਂ r ਦੂਰੀ ਉੱਤੇ ਗੈਰ-ਮਹੱਤਵਪੂਰਨ ਪੁੰਜ ਵਾਲੀਆਂ ਵਸਤੂਆਂ ਚੱਕਰ ਲਗਾਉਣਾ ਦਿੱਤੇ ਹੋਣ ਤੇ, ਨਿਊਟੋਨੀਅਨ ਗਰੈਵੀਟੇਸ਼ਨ ਵਾਸਤੇ ਸਪੇਸਟਾਈਮ ਅਰਸਾ ਅਜਿਹੀ ਚੀਜ਼ ਹੁੰਦੀ ਹੈ ਜਿਸ ਲਈ ਸਿਰਫ ਸਮਾਂ ਗੁਣਾਂਕ (ਟਾਈਮ ਕੋਐਫੀਸ਼ੈਂਟ) ਹੀ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ:[17]: 229–232
ਸਪੇਸ ਦਾ ਕਰਵੇਚਰ
[ਸੋਧੋ]ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ
ਦੇ ਸਾਹਮਣੇ ਦਾ ਗੁਣਾਂਕ ਪੂਰੀ ਤਰਾਂ ਸਾਰੇ ਨਿਊਟੋਨੀਅਨ ਗਰੈਵੀਟੇਸ਼ਨਲ ਅਸਰਾਂ ਲਈ ਜਿਮੇਵਾਰ ਹੈ। ਜਿਵੇਂ ਉਮੀਦ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਇਹ ਸਹੀ ਫੈਕਟਰ (ਹਿੱਸਾ), ਅਤੇ ਦੇ ਸਿੱਧੇ ਅਨੁਪਾਤ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਡੀਨੋਮੀਨੇਟਰ ਅੰਦਰ ਕਾਰਣਮ ਸੋਧ ਫੈਕਟਰ ਵਧ ਜਾਂਦਾ ਹੈ ਜਿਉਂ ਹੀ ਕੋਈ ਗਰੈਵਿਟੀ ਪੈਦਾ ਕਰਨ ਵਾਲੀ ਵਸਤੂ ਨਜ਼ਦੀਕ ਪਹੁੰਚਦੀ ਹੈ, ਜਿਸਦਾ ਅਰਥ ਹੁੰਦਾ ਹੈ ਕਿ ਵਕਤ ਵਕਰਿਤ ਹੁੰਦਾ ਹੈ।
ਪਰ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਕਰਿਤ ਸਪੇਸ ਅਤੇ ਵਕਰਿਤ ਸਮੇਂ ਦੀ ਇੱਕ ਥਿਊਰੀ ਹੁੰਦੀ ਹੈ, ਇਸਲਈ ਜੇਕਰ ਉੱਪਰ ਦਰਸਾਏ ਸਪੇਸਟਾਈਮ ਅਰਸੇ ਦੇ ਸਥਾਨਿਕ ਕੰਪੋਨੈਂਟਾਂ ਨੂੰ ਸੁਧਾਰਨ ਵਾਲੀਆਂ ਰਕਮਾਂ ਹੁੰਦੀਆਂ ਹੋਣ, ਤਾਂ ਕੀ ਉਹਨਾਂ ਦੇ ਅਸਰ, ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਗ੍ਰਹਿਾਂ ਅਤੇ ਸੈਟੇਲਾਈਟਾਂ ਦੇ ਚੱਕਰਪਥਾਂ ਉੱਤੇ ਸਪੈਸ਼ੀਅਲ ਰਕਮਾਂ ਪ੍ਰਤਿ ਲਾਗੂ ਕੀਤੇ ਕਰਵੇਚਰ ਸੋਧ ਫੈਕਟਰਾਂ ਕਾਰਣ, ਨਹੀਂ ਦਿਸਣੇ ਚਾਹੀਦੇ?
ਜਵਾਬ ਇਹ ਹੈ ਕਿ ਇਹ ਅਸਰ ਦੇਖੇ ਜਾਂਦੇ ਹਨ, ਪਰ ਬਹੁਤ ਸੂਖਮ ਹੁੰਦੇ ਹਨ। ਕਾਰਣ ਇਹ ਹੁੰਦਾ ਹੈ ਕਿ ਗ੍ਰਹਿਾਂ ਦੀਆਂ ਵਿਲੌਸਟੀਆਂ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਬਹੁਤ ਹੀ ਘੱਟ ਹੁੰਦੀਆਂ ਹਨ, ਤਾਂ ਜੋ ਸੋਲਰ ਸਿਸਟਮ ਦੇ ਗ੍ਰਹਿਾਂ ਅਤੇ ਸੈਟੇਲਾਈਟਾਂ ਵਾਸਤੇ, ਰਕਮ, ਸਪੈਸ਼ੀਅਲ ਰਕਮਾਂ ਨੂੰ ਘੱਟ ਦਿਸਣ ਲਗਾ ਦਿੰਦੀ ਹੈ।[17]: 234–238
ਸਪੈਸ਼ੀਅਲ ਰਕਮਾਂ ਦੇ ਛੋਟੇਪਣ ਦੇ ਬਾਵਜੂਦ, ਪਹਿਲਾ ਇਸ਼ਾਰਾ, ਕਿ ਨਿਊਟੋਨੀਅਨ ਗਰੈਵੀਟੇਸ਼ਨ ਨਾਲ ਕੁੱਝ ਨਾ ਕੁੱਝ ਗਲਤ ਹੈ, ਡੇਢ ਕੁ ਸਦੀ ਤੋਂ ਕੁੱਝ ਜਿਆਦਾ ਸਮਾਂ ਪਹਿਲਾਂ ਖੋਜਿਆ ਗਿਆ ਸੀ। 1859 ਵਿੱਚ, ਉਰਬੀਅਨ ਲੇ ਵੈਰੀਅਰ ਨੇ, 1697 ਤੋਂ 1848 ਤੱਕ ਸੂਰਜ ਦੀ ਡਿਸਕ ਉੱਤੇ ਮਰਕਰੀ ਦੀਆਂ ਟ੍ਰਾਂਜ਼ਿਸਟਾਂ ਦੇ ਉਪਲਬਧ ਸਮੇਂ ਦੇ ਨਿਰੀਖਣਾਂ ਦੇ ਇੱਕ ਵਿਸ਼ਲੇਸ਼ਣ ਵਿੱਚ, ਰਿਪੋਰਟ ਦਿੱਤੀ ਕਿ ਗਿਆਤ ਭੌਤਿਕ ਵਿਗਿਆਨ ਮਰਕਰੀ ਦੇ ਚੱਕਰਪਥ ਨੂੰ ਓਦੋਂ ਤੱਕ ਨਹੀਂ ਸਮਝਾ ਸਕਦੀ, ਜਦੋਂ ਤੱਕ ਮਰਕਰੀ ਦੇ ਚੱਕਰਪਥ ਅੰਦਰ ਕੋਈ ਗ੍ਰਹਿ ਜਾਂ ਅਸਟ੍ਰੋਇਆਡ ਬੈਲਟ ਸੰਭਵ ਤੌਰ ਤੇ ਮੌਜੂਦ ਨਾ ਹੋਵੇ। ਮਰਕਰੀ ਦੇ ਚੱਕਰਪਥ ਦੀ ਸੂਰਜ ਕੋਲ ਨਜ਼ਦੀਕੀ ਨੇ ਇਸ ਉੱਤੇ ਇੱਕ ਪ੍ਰੀਸੈਸ਼ਨ ਦੀ ਵਾਧੂ ਦਰ ਪ੍ਰਦ੍ਰਸ਼ਿਤ ਕੀਤੀ ਹੈ ਜੋ ਹੋਰ ਗ੍ਰਹਿਾਂ ਦੇ ਅਚਾਨਕ ਧੱਕੇ ਰਾਹੀਂ ਸਮਝਾਈ ਨਹੀਂ ਜਾ ਸਕਦੀ ਸੀ।[48] ਇਸ ਨਿਯਮਵਿਰੁੱਧ ਪ੍ਰੀਸੈਸ਼ਨ (ਸਿਰਫ 43 ਆਰਕ ਸਕਿੰਟ ਪ੍ਰਤਿ ਊਸ਼ਣਕਟੀਬੰਧੀ ਸਦੀ) ਦੇ ਛੋਟੇ ਮੁੱਲ ਨੂੰ ਸਹੀ ਤੌਰ ਤੇ ਨਾਪਣ ਅਤੇ ਡਿਟੈਕਟ ਕਰਨ ਲਈ ਯੋਗਤਾ, 19ਵੀਂ ਸਦੀ ਦੀ ਅਸਟ੍ਰੋਮੀਟਰੀ ਦੀ ਜਟਿਲ ਬਣਾਵਟ ਪ੍ਰਤਿ ਸਬੂਤ ਹੈ।
ਯੂਰੇਨਸ ਦੇ ਚੱਕਰਪਥ ਅੰਦਰ ਡਾਂਵਾਂਡੋਲਤਾਵਾਂ ਵਿਸ਼ਲੇਸ਼ਿਤ ਕਰਨ ਸਦਕਾ "ਅਪਣੇ ਪੈਨ ਦੀ ਨਿੱਬ ਉੱਤੇ" ਨੈਪਚਿਊਨ ਦੀ ਹੋਂਦ ਨੂੰ ਪਹਿਲਾਂ ਹੀ ਖੋਜ ਲੈਣ ਵਾਲੇ ਇੱਕ ਪ੍ਰਸਿੱਧ ਖਗੋਲ-ਸ਼ਾਸਤਰੀ, ਲੇ ਵੈਰੀਅਰ ਦੀ ਘੋਸ਼ਣਾ ਨੇ ਵੁਲਕਨ-ਮੇਨੀਆ ਦੇ ਇੱਕ ਦੋ-ਦਹਾਕੇ ਲੰਬੇ ਅਰਸੇ ਨੂੰ ਪ੍ਰੇਰਣਾ ਦਿੱਤੀ, ਜਿਵੇਂ ਪ੍ਰੋਫੈਸ਼ਨਲ ਅਤੇ ਅਮੇਚੁਅਰ ਖਗੋਲਸ਼ਾਤਰੀਆਂ ਨੇ ਇਸੇਤਰਾਂ ਪਰਿਕਲਪਿਤ ਨਵੇਂ ਗ੍ਰਹਿ ਲਈ ਬਾਲ ਕੀਤੀ ਸੀ। ਇਸ ਖੋਜ ਨੇ ਵੁਲਨ ਦੀਆਂ ਕਈ ਝੂਠੀਆਂ ਸਮਝਾਂ (ਰਮਜ਼ਾਂ) ਸ਼ਾਮਿਲ ਕੀਤੀਆਂ। ਅੰਤ ਨੂੰ ਇਹ ਗੱਲ ਸਥਾਪਿਤ ਹੋ ਗਈ ਕਿ ਅਜਿਹਾ ਕੋਈ ਗ੍ਰਹਿ ਜਾਂ ਖਗੋਲੀ ਪਿੰਡ ਹੈ ਹੀ ਨਹੀਂ।[49]
1916 ਵਿੱਚ, ਆਈਨਸਟਾਈਨ ਨੇ ਇਹ ਸਾਬਤ ਕਰਨਾ ਸੀ ਕਿ ਮਰਕਰੀ ਦੀ ਇਹ ਨਿਯਮਵਿਰੁੱਧ ਪ੍ਰੀਸੈਸ਼ਨ ਸਪੇਸਟਾਈਮ ਦੇ ਕਰਵੇਚਰ ਵਿੱਚ ਸਪੈਸ਼ੀਅਲ ਰਕਮਾਂ ਸਦਕਾ ਸਮਝਾਈ ਜਾ ਸਕਦੀ ਹੈ। ਅਸਥਾਈ ਰਕਮ ਅੰਦਰਲਾ ਕਰਵੇਚਰ, ਸਰਲ ਤੌਰ ਤੇ ਨਿਊਟੋਨੀਅਨ ਗਰੈਵੀਟੇਸ਼ਨ ਦਾ ਇੱਕ ਦਰਸਾਓ ਹੋਣ ਨਾਤੇ, ਇਸ ਨਿਯਮ-ਵਿਰੁੱਧ ਪ੍ਰੀਸੈਸ਼ਨ ਨੂੰ ਸਮਝਾਉਣ ਵਿੱਚ ਕੋਈ ਹਿੱਸਾ ਨਹੀਂ ਰੱਖਦਾ। ਉਸਦੇ ਹਿਸਾਬ-ਕਤਾਬ ਦੀ ਸਫਲਤਾ ਆਈਨਸਟਾਈਨ ਦੇ ਸਾਥੀਆਂ ਪ੍ਰਤਿ ਇੱਕ ਸ਼ਕਤੀਸ਼ਾਲੀ ਇਸ਼ਾਰਾ ਸੀ ਕਿ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਥਿਊਰੀ ਸਹੀ ਹੋ ਸਕਦੀ ਹੈ।
ਆਈਨਸਟਾਈਨ ਦੇ ਅਨੁਮਾਨਾਂ ਦੀ ਸਭ ਤੋਂ ਵੱਧ ਸ਼ਾਨਦਾਰਤਾ ਉਸਦਾ ਇਹ ਹਿਸਾਬ-ਕਤਾਬ ਸੀ ਕਿ ਸਪੇਸਟਾਈਮ ਅਰਸੇ ਦੇ ਸਥਾਨਿਕ ਕੰਪੋਨੈਂਟਾਂ ਅੰਦਰਲੀਆਂ ਕਰਵੇਚਰ ਰਕਮਾਂ ਨੂੰ ਕਿਸੇ ਭਾਰੀ ਵਸਤੂ ਦੁਆਲ਼ੇ ਪ੍ਰਕਾਸ਼ ਦੇ ਝੁਕ ਜਾਣ ਵਿੱਚ ਨਾਪਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਸਪੇਸਟਾਈਮ ਡਾਇਗ੍ਰਾਮ ਉੱਤੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਢਲਾਣ (ਸਲੋਪ) ±1 ਹੁੰਦੀ ਹੈ। ਸਪੇਸ ਅੰਦਰ ਇਸਦੀ ਗਤੀਵਿਧੀ ਵਕਤ ਵਿੱਚ ਇਸਦੀ ਗਤੀਵਿਧੀ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ। ਇਨਵੇਰੀਅੰਟ ਅਰਸੇ ਦੇ ਕਮਜੋਰ ਫੀਲਡ ਦਰਸਾਓ ਵਾਸਤੇ, ਆਈਨਸਟਾਈਨ ਨੇ ਇਸਦੇ ਸਪੈਸ਼ੀਅਲ ਕੰਪੋਨੈਂਟਾਂ ਵਿੱਚ ਇੰਨਬਿੰਨ ਬਰਾਬਰ ਪਰ ਉਲਟ ਚਿੰਨ ਕਰਵੇਚਰ ਕੈਲਕੁਲੇਟ ਕੀਤੇ।[17]: 234–238
ਨਿਊਟਨ ਦੀ ਗਰੈਵੀਟੇਸ਼ਨ ਵਿੱਚ, ਦੇ ਸਾਹਮਣੇ ਦਾ ਗੁਣਾਂਕ, ਕਿਸੇ ਤਾਰੇ ਦੁਆਲ਼ੇ ਪ੍ਰਕਾਸ਼ ਦੇ ਝੁਕਣ ਦਾ ਅਨੁਮਾਨ ਲਗਾਉਂਦਾ ਹੈ। ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ, ਦੇ ਸਾਹਮਣੇ ਦਾ ਗੁਣਾਂਕ, ਕੁੱਲ ਝੁਕਾਓ ਦੇ ਇੱਕ ਦੋਹਰੇਪਣ ਦਾ ਅਨੁਮਾਨ ਲਗਾਉਂਦਾ ਹੈ।[17]: 234–238
1919 ਦੇ ਐਡਿੰਗਟਨ ਗ੍ਰਹਿਣ ਮੁਹਿੰਮ ਦੀ ਕਹਾਣੀ ਅਤੇ ਆਈਨਸਟਾਈਨ ਦੇ ਪ੍ਰਸਿੱਧ ਹੋਣਾ ਸ਼ੁਰੂ ਹੋਣ ਦਾ ਸਭ ਜਗਹ ਪਤਾ ਲੱਗ ਚੁੱਕਾ ਸੀ।[50]
ਸਪੇਸਟਾਈਮ ਕਰਵੇਚਰ ਦੇ ਸੋਮੇ
[ਸੋਧੋ]ਇੱਕ ਸੰਖੇਪ ਹਿੱਸਾ ਸਾਰਾਂਸ਼ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ
ਗਰੈਵੀਟੇਸ਼ਨ ਦੀ ਨਿਊਟਨ ਦੀ ਥਿਊਰੀ ਅੰਦਰ, ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੋਰਸ ਦਾ ਇੱਕੋ ਇੱਕ ਸੋਮਾ ਪੁੰਜ ਹੁੰਦਾ ਹੈ।
ਇਸਦੀ ਤੁਲਨਾ ਵਿੱਚ, ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਪੁੰਜ ਦੇ ਨਾਲ ਨਾਲ ਸਪੇਸਟਾਈਮ ਕਰਵੇਚਰ ਦੇ ਬਹੁਤ ਸਾਰੇ ਸੋਮੇ ਪਛਾਣਦੀ ਹੈ। ਆਈਨਸਟਾਈਨ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ
- ਅੰਦਰ,
ਗਰੈਵਿਟੀ ਦੇ ਸੋਮੇ ਸਟ੍ਰੈੱਸ-ਐਨਰਜੀ ਟੈਂਸਰ, ਵਿੱਚ ਸੱਜੇ ਪਾਸੇ ਉੱਤੇ ਪੇਸ਼ ਕੀਤੇ ਗਏ ਹਨ।
ਚਿੱਤਰ. 5‑5 ਸਟ੍ਰੈੱਸ-ਐਨਰਜੀ ਟੈਂਸਰ ਅੰਦਰ ਗਰੈਵਿਟੀ ਦੇ ਵਿਭਿੰਨ ਸੋਮਿਆਂ ਨੂੰ ਸ਼੍ਰੇਣੀਬੱਧ ਕਰਦਾ ਹੈ।
- (ਲਾਲ ਰੰਗ ਵਿੱਚ): ਕੁੱਲ ਪੁੰਜ-ਊਰਜਾ ਘਣਤਾ (ਮਾਸ-ਐਨਰਜੀ ਡੈਂਸਟੀ), ਜਿਸ ਵਿੱਚ ਮਨਚਾਹੀਆਂ ਤਾਪ ਗਤੀਆਂ ਤੋਂ ਗਤਿਜ ਊਰਜਾ ਦੇ ਰੂਪ ਵਿੱਚ ਊਰਜਾ ਦੇ ਨਾਲ ਨਾਲ, ਕਣਾਂ ਦਰਮਿਆਨ ਫੋਰਸਾਂ ਤੋਂ ਪੁਟੈਂਸ਼ਲ ਊਰਜਾ ਪ੍ਰਤਿ ਕੋਈ ਵੀ ਯੋਗਦਾਨ ਵੀ ਸ਼ਾਮਿਲ ਹਨ।
- ਅਤੇ (ਸੰਤਰੀ ਰੰਗ ਵਿੱਚ): ਇਹ ਮੋਮੈਂਟਮ ਡੈਂਸਟੀ ਰਕਮਾਂ ਹਨ। ਭਾਵੇਂ ਕੋਈ ਵਿਸ਼ਾਲ ਗਤੀ ਨਾ ਹੋਵੇ, ਫੇਰ ਵੀ ਊਰਜਾ ਨੂੰ ਤਾਪ ਸੰਚਾਰ ਸਦਕਾ ਸੰਚਾਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਜਾ ਸਕਦਾ ਹੈ, ਅਤੇ ਸੰਚਾਰਿਤ ਊਰਜਾ ਮੋਮੈਂਟਮ ਚੁੱਕ ਕੇ ਰੱਖਦੀ ਹੈ।
- , ਮੋਮੈਂਟਮ ਪ੍ਰਤਿ ਯੂਨਿਟ ਖੇਤਰਫਲ ਦੇ i-ਕੰਪੋਨੈਂਟ ਦੇ j-ਦਿਸ਼ਾ ਵਿੱਚ ਵਹਿਣ (ਫਲੋ) ਦੀਆਂ ਦਰਾਂ (ਰੇਟ) ਹੁੰਦੇ ਹਨ। ਭਾਵੇਂ ਕੋਈ ਵਿਸ਼ਾਲ ਗਤੀ ਨਾ ਵੀ ਹੁੰਦੀ ਹੋਵੇ, ਤਾਂ ਵੀ ਕਣਾਂ ਦੀਆਂ ਮਨਚਾਹੀਆਂ ਤਾਪ ਗਤੀਆਂ ਮੋਮੈਂਟਮ ਪ੍ਰਵਾਹ ਨੂੰ ਪੈਦਾ ਕਰਨਗੀਆਂ, ਇਸ ਕਰਕੇ i = j ਰਕਮਾਂ (ਹਰੇ ਰੰਗ ਵਿੱਚ) ਆਈਸੋਟ੍ਰੋਪਿਕ ਪ੍ਰੈੱਸ਼ਰ ਪੇਸ਼ ਕਰਦੀਆਂ ਹਨ, ਅਤੇ i ≠ j ਰਕਮਾਂ (ਨੀਲੇ ਰੰਗ ਵਿੱਚ), ਸ਼ੀਅਰ ਸਟ੍ਰੈੱਸਾਂ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਦੀਆਂ ਹਨ।[51]
ਇਕੁਏਸ਼ਨਾਂ ਤੋਂ ਕੱਢਿਆ ਜਾਣ ਵਾਲਾ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਨਤੀਜਾ, ਬੋਲਚਾਲ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਬੋਲਦੇ ਹੋਏ, ਇਹ ਹੈ ਕਿ, ਗਰੈਵਿਟੀ ਖੁਦ ਹੀ ਗਰੈਵਿਟੀ ਨੂੰ ਰਚਦੀ ਹੈ।[note 11] ਊਰਜਾ ਪੁੰਜ ਰੱਖਦੀ ਹੈ। ਨਿਊਟੋਨੀਅਨ ਗਰੈਵਿਟੀ ਅੰਦਰ ਵੀ, ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਨਾਲ ਇੱਕ ਊਰਜਾ E = mgh ਸਬੰਦਤ ਹੁੰਦੀ ਹੈ ਜਿਸਨੂੰ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪੁਟੈਂਸ਼ਲ ਐਨਰਜੀ ਕਹਿੰਦੇ ਹਨ। ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ, ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਦੀ ਊਰਜਾ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਦੀ ਰਚਨਾ ਵਿੱਚ ਵਾਪਿਸ ਲਗਦੀ ਗੁਣਨਫਲ ਇਹ ਇਕੁਏਸ਼ਨਾਂ ਨੂੰ ਗੈਰ-ਰੇਖਿਕ ਅਤੇ ਹੱਲ ਕਰਨ ਲਈ ਹੋਰ ਸਭ ਕੁੱਝ ਤੋਂ ਬਹੁਤ ਜਿਆਦਾ ਕਠਿਨ ਬਣਾ ਦਿੰਦਾ ਹੈ ਕਿ ਸਿਰਫ ਕਮਜੋਰ ਫੀਲਡ ਮਾਮਲੇ ਹੀ ਸੌਖੇ ਰਹਿੰਦੇ ਹਨ।[17]: 240 ਸੰਖਿਅਕ ਰਿਲੇਟੀਵਿਟੀ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਇੱਕ ਅਜਿਹੀ ਸ਼ਾਖ ਹੈ ਜੋ ਤਾਕਤਵਰ ਫੀਲਡ ਖੇਤਰਾਂ ਅੰਦਰ ਹੋਰ ਬਲੈਕ ਹੋਲਾਂ, ਗਰੈਵੀਟੇਸ਼ਨਲ ਤਰੰਗਾਂ, ਨਿਊਟ੍ਰੌਨ ਤਾਰਿਆਂ ਅਤੇ ਹੋਰ ਵਰਤਾਰਿਆਂ ਦੇ ਅਧਿਐਨ ਲਈ ਅਕਸਰ ਸੁਪਰਕੰਪਿਊਟਰਾਂ ਨੂੰ ਕੰਮ ਤੇ ਲਗਾ ਕੇ, ਸਮੱਸਿਆਵਾਂ ਦੇ ਵਿਸ਼ਲੇਸ਼ਣ ਅਤੇ ਹੱਲ ਵਾਸਤੇ ਸੰਖਿਅਕ ਤਰੀਕੇ ਵਰਤਦੀ ਹੈ। ਜਾਣ-ਪਛਾਣ ਵੱਲ ਪਰਤੋ
ਐਨਰਜੀ-ਮੋਮੈਂਟਮ
[ਸੋਧੋ]
ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ, ਪੁੰਜ-ਊਰਜਾ, ਮੋਮੈਂਟਮ ਨਾਲ ਨਜ਼ਦੀਕੀ ਤੌਰ ਤੇ ਜੁੜੀ ਹੁੰਦੀ ਹੈ। ਜਿਵੇਂ ਅਸੀਂ ਪਹਿਲਾਂ ਹੀ ਇਸ ਦੀ ਚਰਚਾ ਐਨਰਜੀ ਅਤੇ ਮੋਮੈਂਟਮ ਉੱਤੇ ਹਿੱਸੇ ਵਿੱਚ ਕਰ ਆਏ ਹਾਂ, ਜਿਵੇਂ ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਇੱਕ ਹੋਰ ਜਿਆਦਾ ਵਿਆਪਕ ਸਪੇਸਟਾਈਮ ਨਾਮਕ ਸੱਤਾ (ਇਕਾਈ) ਦੇ ਵੱਖਰੇ ਪਹਿਲੂ ਹੁੰਦੇ ਹਨ, ਉਸੇ ਤਰਾਂ ਪੁੰਜ-ਊਰਜਾ ਅਤੇ ਮੋਮੈਂਟਮ, ਸਿਰਫ ਇੱਕ ਯੂਨੀਫਾਈਡ (ਏਕੀਕ੍ਰਿਤ), ਚਾਰ-ਮੋਮੈਂਟਮ ਨਾਮਕ ਚਾਰ-ਅਯਾਮੀ ਮਾਤਰਾ ਹੁੰਦੇ ਹਨ। ਨਤੀਜੇ ਵਜੋਂ, ਜੇਕਰ ਪੁੰਜ-ਊਰਜਾ ਗਰੈਵਿਟੀ ਦਾ ਇੱਕ ਸੋਮਾ ਹੋਵੇ, ਤਾਂ ਮੋਮੈਂਟਮ ਵੀ ਇੱਕ ਸੋਮਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਮੋਮੈਂਟਮ ਦੀ ਗਰੈਵਿਟੀ ਦੇ ਇੱਕ ਸੋਮੇ ਵਜੋਂ ਸ਼ਮੂਲੀਅਤ ਹੋਣੀ, ਇਸ ਭਵਿੱਖਬਾਣੀ ਵੱਲ ਲਿਜਾਂਦੀ ਹੈ ਕਿ ਗਤੀਸ਼ੀਲ ਜਾਂ ਘੁੰਮ ਰਹੇ ਪੁੰਜ, ਗਤੀਸ਼ੀਲ ਚਾਰਜਾਂ ਸਦਕਾ ਪੈਦਾ ਹੋਈਆਂ ਚੁੰਬਕੀ ਫੀਲਡਾਂ ਫਦੇ ਤੁੱਲ ਫੀਲਡਾਂ ਪੈਦਾ ਕਰ ਸਕਦੇ ਹਨ, ਜਿਸ ਵਰਤਾਰੇ ਨੂੰ ਗ੍ਰੈਵਿਟੋ-ਮੈਗਨੈਟਿਜ਼ਮ ਕਿਹਾ ਜਾਂਦਾ ਜਾਂਦਾ ਹੈ।[52]
ਇਹ ਚੰਗੀ ਤਰਾਂ ਗਿਆਤ ਹੈ ਕਿ ਚੁੰਬਕੀ ਬਲ ਨੂੰ ਗਤੀਸ਼ੀਲ ਚਾਰਜਾਂ ਪ੍ਰਤਿ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਕਨੂੰਨਾਂ ਨੂੰ ਲਾਗੂ ਕਰਕੇ ਵਿਓਂਤਬੰਦ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। (ਇਸਦੀ ਇੱਕ ਅਰਥ-ਭਰਪੂਰ ਪੇਸ਼ਕਸ਼ ਫੇਨਾਮੈਨ ਦੁਆਰਾ ਵੌਲਿਊਮ 2 chapter 13–6 ਵਿੱਚ ਉਸਦੇ ਲੈਕਚਰਜ਼ ਔਨ ਫਿਜ਼ਿਕਸ ਵਿੱਚ ਕੀਤੀ ਗਈ ਹੈ, ਜੋ ਔਨਲਾਈਨ ਉਪਲਬਧ ਹੈ।[53]) ਤੁੱਲ ਤਰਕ ਦੀ ਵਰਤੋਂ ਗ੍ਰੈਵਿਟੋ-ਮੈਗਨੈਟਿਜ਼ਮ ਦੇ ਮੁੱਢ ਨੂੰ ਸਾਬਤ ਕਰਨ ਲਈ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਚਿੱਤਰ. 5‑7a ਵਿੱਚ, ਭਾਰੀ ਕਣਾਂ ਦੀਆਂ ਦੋ ਸਮਾਂਤਰ, ਅਨੰਤ ਤੌਰ ਤੇ ਲੰਬੀਆਂ ਧਾਰਾਵਾਂ (ਸਟਰੀਮਾਂ), ਕਿਸੇ ਰੈਸਟ ਕਰ ਰਹੇ ਟੈਸਟ ਕਣ ਅਤੇ ਦੋਹਾਂ ਦਰਮਿਆਨ ਕੇਂਦਰੀਕ੍ਰਿਤ ਕੀਤੇ ਕਣਾਂ ਦੇ ਸਾਪੇਖਿਕ, ਬਰਾਬਰ ਅਤੇ ਉਲਟ ਵਿਲੌਸਿਟੀਆਂ −v ਅਤੇ +v ਰੱਖਦੀਆਂ ਹਨ।
ਸੈੱਟ-ਅਪ ਦੀ ਸਮਰੂਪਤਾ ਕਾਰਨ, ਕੇਂਦਰੀ ਕਣ ਉੱਤੇ ਸ਼ੁੱਧ ਫੋਰਸ 0 ਰਹਿੰਦਾ ਹੈ। ਮੰਨ ਲਓ v << c ਹੋਵੇ, ਤਾਂ ਜੋ ਵਿਲੌਸਟੀਆਂ ਸਰਲ ਤੌਰ ਤੇ ਜੋੜਾਤਮਿਕ ਰਹਿਣ। ਚਿੱਤਰ. 5‑7b ਇੰਨਬਿੰਨ ਇਹੀ ਸੈੱਟ-ਅਪ ਦਿਖਾਉਂਦਾ ਹੈ, ਪਰ ਉੱਪਰਲੀ ਧਾਰਾ ਦੀ ਫ਼ਰੇਮ ਵਿੱਚ। ਟੈਸਟ ਕਣ ਦੀ ਵਿਲੌਸਿਟੀ +v ਹੈ, ਅਤੇ ਤਲ ਵਾਲੀ ਧਾਰਾ ਦੀ ਵਿਲੌਸਿਟੀ +2v ਹੈ। ਕਿਉਂਕਿ ਭੌਤਿਕੀ ਪ੍ਰਸਥਿਤੀ ਤਬਦੀਲ ਨਹੀਂ ਹੁੰਦੀ, ਇਸਲਈ ਸਿਰਫ ਓਹ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਜਿਸ ਵਿੱਚ ਵਸਤੂਆਂ ਨਿਰੀਖਤ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ, ਟੈਸਟ ਪਾਰਟੀਕਲ ਕਿਸੇ ਵੀ ਧਾਰਾ ਵੱਲ ਖਿੱਚਿਆ ਨਹੀਂ ਜਾਣਾ ਚਾਹੀਦਾ। ਪਰ ਇਹ ਸਪੱਸ਼ਟ ਨਹੀਂ ਹੈ ਕਿ ਟੈਸਟ ਪਾਰਟੀਕਲ ਉੱਤੇ ਪਾਏ ਗਏ ਫੋਰਸ ਬਰਾਬਰ ਹਨ ਜਾਂ ਨਹੀਂ।
- ਕਿਉਂਕਿ ਤਲ ਵਾਲੀ ਧਾਰਾ ਸ਼ਿਖਰਲੀ ਧਾਰਾ ਤੋਂ ਤੇਜ਼ ਗਤੀਸ਼ੀਲ ਹੈ, ਇਸਲਈ ਤਲ ਵਾਲੀ ਧਾਰਾ ਅੰਦਰਲਾ ਹਰੇਕ ਕਣ ਸ਼ਿਖਰ ਵਾਲੀ ਧਾਰਾ ਵਾਲੇ ਕਣਾਂ ਨਾਲ਼ੋਂ ਇੱਕ ਵੱਡੀ ਪੁੰਜ ਊਰਜਾ ਰੱਖਦਾ ਹੈ।
- ਲੌਰੰਟਜ਼ ਕੰਟ੍ਰੈਕਸ਼ਨ ਦੇ ਕਾਰਣ, ਸ਼ਿਖਰਲੀ ਧਾਰਾ ਅੰਦਰਲੇ ਕਣਾਂ ਨਾਲ਼ੋਂ ਤਲ ਵਾਲੀ ਧਾਰਾ ਅੰਦਰਲੇ ਕਣ, ਜਿਆਦਾ ਕਣ ਪ੍ਰਤਿ ਯੂਨਿਟ ਲੰਬਾਈ ਹੁੰਦੇ ਹਨ।
- ਤਲ ਵਾਲੀ ਧਾਰਾ ਦੇ ਕ੍ਰਿਆਸ਼ੀਲ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪੁੰਜ ਪ੍ਰਤਿ ਇੱਕ ਹੋਰ ਯੋਗਦਾਨ ਇੱਕ ਵਾਧੂ ਪ੍ਰੈੱਸ਼ਰ ਰਕਮ ਤੋਂ ਆਉਂਦਾ ਹੈ, ਜਿਸ ਬਾਰੇ, ਇਸ ਬਿੰਦੂ ਉੱਤੇ, ਚਰਚਾ ਕਰਨ ਵਾਸਤੇ ਸਾਡੇ ਕੋਲ ਜਰੂਰਤ ਮੁਤਾਬਿਕ ਬੈਕਗ੍ਰਾਉਂਡ ਨਹੀਂ ਹੈ।
ਸਾਰੇ ਦੇ ਸਾਰੇ ਇਹ ਪ੍ਰਭਾਵ ਇੱਕਠੇ ਹੋ ਕੇ ਇਹ ਮੰਗਦੇ ਦਿਸਦੇ ਹਨ ਕਿ ਟੈਸਟ ਕਣ ਤਲ ਵਾਲੀ ਧਾਰਾ ਵੱਲ ਖਿੱਚਿਆ ਜਾਂਦਾ ਹੈ।
ਟੈਸਟ ਕਣ ਤਲ ਵਾਲੀ ਧਾਰਾ ਵੱਲ ਨਹੀਂ ਖਿੱਚਿਆ ਜਾਂਦਾ ਕਿਉਂਕਿ ਇੱਕ ਵਿਲੌਸਿਟੀ-ਅਧਾਰਿਤ ਫੋਰਸ ਹੁੰਦਾ ਹੈ ਜੋ ਕਿਸੇ ਅਜਿਹੇ ਕਣ ਨੂੰ ਧੱਕਣ ਦਾ ਕੰਮ ਕਰਦਾ ਹੈ ਜੋ ਤਲ ਵਾਲੀ ਧਾਰਾ ਦੀ ਹੀ ਦਿਸ਼ਾ ਵਿੱਚ ਗਤੀਸ਼ੀਲ ਹੋ ਰਿਹਾ ਹੁੰਦਾ ਹੈ। ਇਹ ਵਿਲੌਸਿਟੀ-ਅਧਾਰਿਤ ਗਰੈਵੀਟੇਸ਼ਨਲ ਅਸਰ ਗ੍ਰੈਵਿਟੋ-ਮੈਗਨੇਟਿਜ਼ਮ ਹੁੰਦਾ ਹੈ।[17]: 245–253
ਕਿਸੇ ਗ੍ਰੈਵਿਟੋ-ਚੁੰਬਕੀ ਫੀਲਡ ਰਾਹੀਂ ਗਤੀਸ਼ੀਲ ਪਦਾਰਥ ਇਸ ਕਰਕੇ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਇੰਡਕਸ਼ਨ ਦੇ ਤੁੱਲ ਫ੍ਰੇਮ-ਡ੍ਰੈਗਿੰਗ ਨਾਮਕ ਅਸਰਾਂ ਦਾ ਸਾਹਮਣਾ ਕਰਦਾ ਹੈ। ਇਹ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ ਗਿਆ ਹੈ ਕਿ;
ਅਜਿਹੇ ਗ੍ਰੈਵਿਟੋ-ਚੁੰਬਕੀ ਫੋਰਸ ਕਿਸੇ ਘੁੰਮ ਰਹੀ ਸੁਪਰ-ਭਾਰੀ ਬਲੈਕ ਹੋਲਾਂ[54][55] ਰਾਹੀਂ ਕੱਢੇ ਜਾਂਦੇ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਜੈੱਟਾਂ (ਚਿੱਤਰ. 5‑8) ਦੀ ਪੈਦਾਵਰ ਪਿੱਛੇ ਜਿਮੇਵਾਰ ਹੁੰਦੇ ਹਨ।
ਪ੍ਰੈੱਸ਼ਰ ਅਤੇ ਸਟ੍ਰੈੱਸ
[ਸੋਧੋ]ਊਰਜਾ ਅਤੇ ਮੋਮੈਂਟਮ ਨਾਲ ਸਿੱਧੇ ਤੌਰ ਤੇ ਸਬੰਧਤ ਮਾਤ੍ਰਾਵਾਂ ਗਰੈਵਿਟੀ ਦੇ ਸੋਮੇ ਵੀ ਹੋਣੀਆਂ ਹੀ ਚਾਹੀਦੀਆਂ ਹਨ, ਜਿਹਨਾਂ ਦਾ ਨਾਮ ਅੰਦਰੂਨੀ ਪ੍ਰੈੱਸ਼ਰ ਅਤੇ ਸਟ੍ਰੈੱਸ ਹੈ। ਦੋਵੇਂ ਇਕੱਠੀਆਂ ਲੈਣ ਤੇ, ਪੁੰਜ-ਊਰਜਾ, ਮੋਮੈਂਟਮ, ਪ੍ਰੇੱਸ਼ਰ ਅਤੇ ਸਟ੍ਰੈੱਸ ਸਭ ਹੀ ਸਪੇਸਟਾਈਮ ਨੂੰ ਦੱਸਦੇ ਹਨ ਕਿ ਵਕਰਿਤ ਕਿਵੇਂ ਹੋਣਾ ਹੈ।
ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਅਨੁਮਾਨ ਲਗਾਉਂਦੀ ਹੈ ਕਿ ਪ੍ਰੈੱਸ਼ਰ, ਪੁੰਜ-ਊਰਜਾ ਘਣਤਾ ਜਿੰਨੀ ਤਾਕਤ ਨਾਲ ਇੱਕ ਗਰੈਵੀਟੇਸ਼ਨਲ ਸੋਮੇ ਦੇ ਤੌਰ ਤੇ ਕ੍ਰਿਆ ਕਰਦਾ ਹੈ। ਗਰੈਵਿਟੀ ਦੇ ਸੋਮੇ ਦੇ ਤੌਰ ਤੇ ਪ੍ਰੈੱਸ਼ਰ ਨੂੰ ਸ਼ਾਮਿਲ ਕਰਨਾ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਬਨਾਮ ਨਿਊਟੋਨੀਅਨ ਗਰੈਵੀਟੇਸ਼ਨ ਦੇ ਅਨੁਮਾਨਾਂ ਦਰਮਿਆਨ ਨਾਟਕੀ ਫਰਕਾਂ ਵੱਲ ਲਿਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਪ੍ਰੈੱਸ਼ਰ ਰਕਮ ਕਿਸੇ ਨਿਊਟ੍ਰੌਨ ਤਾਰੇ ਦੇ ਪੁੰਜ ਨੂੰ ਇੱਕ ਉੱਚਤਮ ਸੀਮਾ ਤੱਕ ਸੈੱਟ ਕਰਦਾ ਹੈ। ਜਿੰਨਾ ਭਾਰੀ ਕੋਈ ਨਿਊਟ੍ਰੌਨ ਤਾਰਾ ਹੁੰਦਾ ਹੈ, ਉੰਨਾ ਹੀ ਜਿਆਦਾ ਪ੍ਰੈੱਸ਼ਰ ਗਰੈਵਿਟੀ ਦੇ ਵਿਰੁੱਧ ਉਸਦੇ ਭਾਰ ਨੂੰ ਸਹਾਰਾ ਦੇਣ ਲਈ ਚਾਹੀਦਾ ਹੁੰਦਾ ਹੈ। ਵਧਿਆ ਹੋਇਆ ਪ੍ਰੈੱਸ਼ਰ, ਫੇਰ ਵੀ, ਤਾਰੇ ਦੇ ਪੁੰਜ ਉੱਤੇ ਕ੍ਰਿਆਸ਼ੀਲ ਗਰੈਵਿਟੀ ਵਿੱਚ ਜੁੜ ਜਾਂਦਾ ਹੈ। ਟੋਲਮਨ-ਔੱਪਨਹੀਮਰ-ਵੋਲਕੌਫ ਹੱਦ ਰਾਹੀਂ ਨਿਰਧਾਰਿਤ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਪੁੰਜ ਤੋਂ ਉੱਪਰ, ਪ੍ਰਕ੍ਰਿਆ ਭੱਜ ਜਾਂਦੀ ਹੈ ਅਤੇ ਨਿਊਟ੍ਰੌਨ ਤਾਰਾ ਕਿਸੇ ਬਲੈਕ ਹੋਲ ਤੱਕ ਟੁੱਟ (ਮੁੱਕ) ਜਾਂਦਾ ਹੈ।[17]: 243, 280
ਸਟ੍ਰੈੱਸ ਰਕਮਾਂ ਉੱਚ ਤੌਰ ਤੇ ਮਹੱਤਵਪੂਰਨ ਬਣ ਜਾਂਦੀਆਂ ਹਨ ਜਦੋਂ ਕੋਰ-ਕੌਲੈਪਸ ਸੁਪਰਨੋਵਾ ਦੀਆਂ ਹਾਈਡ੍ਰੋਡਾਇਨਾਮਿਕ ਸਟਿਮੁਲੇਸ਼ਨਾਂ ਵਰਗੀਆਂ ਕੈਲਕੁਲੇਸ਼ਨਾਂ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।[56]
ਪ੍ਰਯੋਗਿਕ ਪੁਸ਼ਟੀ
[ਸੋਧੋ]ਸਪੇਸਟਾਈਮ ਕਰਵੇਚਰ ਦੇ ਸੋਮਿਆਂ ਦੇ ਤੌਰ ਤੇ, ਪ੍ਰੈੱਸ਼ਰ, ਮੋਮੈਂਟਮ, ਅਤੇ ਸਟ੍ਰੈੱਸ ਦੀਆਂ ਭੂਮਿਕਾਵਾਂ ਲਈ ਇਹ ਅਨੁਮਾਨ ਸ਼ਾਨਦਾਰ ਹਨ ਅਤੇ ਥਿਊਰੀ ਵਿੱਚ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਭੂਮਿਕਾ ਅਦਾ ਕਰਦੇ ਹਨ। ਪ੍ਰੈੱਸ਼ਰ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ, ਅਰੰਭਿਕ ਬ੍ਰਹਿਮੰਡ ਰੇਡੀਏਸ਼ਨ ਦੁਆਰਾ ਡੋਮੀਨੇਟ ਕੀਤਾ ਜਾਂਦਾ ਸੀ।[57] ਅਤੇ ਇਸ ਗੱਲ ਦੀ ਸੰਭਾਵਨਾ ਬਹੁਤ ਘੱਟ ਹੁੰਦੀ ਹੈ ਕਿ ਕੋਈ ਵੀ ਰਲਵਾਂ ਬ੍ਰਹਿਮੰਡੀ ਆਂਕੜਾ (ਜਿਵੇਂ ਨਿਊਕਲੀਓਸਿੰਥੈਸਿਸ ਮਲਬਾ ਆਦਿ) ਪੁਨਰਪੈਦਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜੇਕਰ ਪ੍ਰੈੱਸ਼ਰ ਗਰੈਵਿਟੀ ਪ੍ਰਤਿ ਯੋਗਦਾਨ ਨਾ ਪਾਉਂਦਾ, ਜਾਂ mass-energy ਦੇ ਤੌਰ ਤੇ ਗਰੈਵਿਟੀ ਦੇ ਇੱਕ ਸੋਮੇ ਜਿੰਨੀ ਤਾਕਤ ਨਾ ਰੱਖਦਾ ਹੁੰਦਾ। ਇਸੇਤਰਾਂ, ਆਈਨਸਟਾਈਨ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ ਦੀ ਗਣਿਤਿਕ ਅਨੁਕੂਲਤਾ ਟੁੱਟ ਜਾਂਦੀ ਹੈ ਜੇਕਰ ਸਟ੍ਰੈੱਸ ਰਕਮਾਂ ਗਰੈਵਿਟੀ ਦੇ ਇੱਕ ਸੋਮੇ ਵਜੋਂ ਯੋਗਦਾਨ ਨਾ ਪਾਉਂਦੀਆਂ।
ਇਹ ਸਭ ਜੋ ਚੰਗਾ ਅਤੇ ਵਧੀਆ ਹੈ, ਪਰ ਕੀ ਕੋਈ ਸਿੱਧੇ ਮਾਤ੍ਰਾਤਮਿਕ ਪ੍ਰਯੋਗਿਤਾਮਿਕ ਜਾਂ ਨਿਰੀਖਣਾਤਮਿਕ ਨਾਪ ਹੁੰਦੇ ਹਨ ਜੋ ਇਹ ਸਾਬਤ ਕਰਦੇ ਹੋਣ ਕਿ ਇਹ ਰਕਮਾਂ ਸਹੀ ਤਾਕਤ ਵਾਲੀ ਗਰੈਵਿਟੀ ਪ੍ਰਤਿ ਯੋਗਦਾਨ ਪਾਉਂਦੀਆਂ ਹਨ?
• ਐਕਟਿਵ, ਪੈੱਸਿਵ, ਅਤੇ ਇਨ੍ਰਸ਼ੀਅਲ ਪੁੰਜ
[ਸੋਧੋ]ਗਰੈਵਿਟੀ ਦੇ ਇਹਨਾਂ ਹੋਰ ਸੋਮਿਆਂ ਸਬੰਧੀ ਪ੍ਰਯੋਗਿਕ ਗਵਾਹੀਆਂ ਦੀ ਚਰਚਾ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ, ਸਾਨੂੰ ਪੁੰਜ ਦੀਆਂ ਵੱਖਰੀਆਂ ਸੰਭਵ ਕਿਸਮਾਂ ਦਰਮਿਆਨ ਬੋਂਦੀ ਦੇ ਫਰਕਾਂ ਦੀ ਚਰਚਾ ਕਰਨ ਦੀ ਜਰੂਰਤ ਹੈ:
- ਐਕਟਿਵ ਪੁੰਜ () ਉਹ ਪੁੰਜ ਹੁੰਦਾ ਹੈ ਜੋ ਇੱਕ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਦੇ ਸੋਮੇ ਵਜੋਂ ਕ੍ਰਿਆ ਕਰਦਾ ਹੈ;
- ਪੈੱਸਿਵ ਪੁੰਜ () ਉਹ ਪੁੰਜ ਹੁੰਦਾ ਹੈ ਜੋ ਕਿਸੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਪ੍ਰਤਿ ਪ੍ਰਤਿਕ੍ਰਿਆ ਕਰਦਾ ਹੈ;
- ਇਨ੍ਰਸ਼ੀਅਲ ਪੁੰਜ () ਉਹ ਪੁੰਜ ਹੁੰਦਾ ਹੈ ਜੋ ਪ੍ਰਵੇਗ ਪ੍ਰਤਿ ਪ੍ਰਤਿਕ੍ਰਿਆ ਕਰਦਾ ਹੈ।[58]
- ਉਹੀ ਹੁੰਦਾ ਹੈ ਜੋ ਅਸੀਂ ਮੁਢਲੇ ਕਥਨਾਂ ਵਾਲੇ ਹਿੱਸੇ ਵਿੱਚ ਸਮਾਨਤਾ ਸਿਧਾਂਤ ਦੀ ਅਪਣੀ ਚਰਚਾ ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪੁੰਜ () ਦੇ ਨਾਮਕ ਰਕਮ ਸ਼ਬਦਬੱਧ ਕੀਤੀ ਸੀ।
ਨਿਊਟੋਨੀਅਨ ਥਿਊਰੀ ਵਿੱਚ,
- ਕ੍ਰਿਆ ਅਤੇ ਪ੍ਰਤੀਕ੍ਰਿਆ ਵਾਲਾ ਤੀਜਾ ਨਿਯਮ ਦੱਸਦਾ ਹੈ ਕਿ ਅਤੇ ਜਰੂਰ ਹੀ ਇੱਕੋ ਹੋਣੀਆਂ ਚਾਹੀਦੀਆਂ ਹਨ।
- ਦੂਜੇ ਪਾਸੇ, ਅਤੇ ਦਾ ਬਰਾਬਰ ਹੋਣਾ ਇੱਕ ਅਨੁਭਵ-ਸਿੱਧ ਨਤੀਜਾ ਹੈ।
ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ,
- ਅਤੇ ਦੀ ਸਮਾਨਤਾ ਸਮਾਨਤਾ ਸਿਧਾਂਤ ਰਾਹੀਂ ਦੱਸੀ ਜਾਂਦੀ ਹੈ।
- ਅਤੇ ਦਰਮਿਆਨ ਕੋਈ ਵੀ ਲਾਜ਼ਮੀ ਸਬੰਧ ਦੱਸਣ ਵਾਲਾ ਕੋਈ ਵੀ ਕ੍ਰਿਆ ਅਤੇ ਪ੍ਰਤੀਕ੍ਰਿਆ ਸਿਧਾਂਤ ਨਹੀਂ ਹੁੰਦਾ।[58]
• ਇੱਕ ਗਰੈਵੀਟੇਸ਼ਨਲ ਸੋਮੇ ਦੇ ਤੌਰ ਤੇ ਪ੍ਰੈੱਸ਼ਰ
[ਸੋਧੋ]ਕਿਸੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਸੋਮੇ (ਯਾਨਿ ਕਿ, ਇਸਦੇ ਕ੍ਰਿਆਸ਼ੀਲ ਪੁੰਜ) ਦੀ ਤਾਕਤ ਨੂੰ ਨਾਪਣ ਲਈ ਕਲਾਸੀਕਲ ਪ੍ਰਯੋਗ ਸਭ ਤੋਂ ਪਹਿਲਾਂ 1797 ਵਿੱਚ ਹੈਨਰੀ ਕੈਵੈਂਡਿਸ਼ (ਚਿੱਤਰ. 5‑9a) ਰਾਹੀਂ ਕੀਤਾ ਗਿਆ ਸੀ। ਦੋ ਛੋਟੀਆਂ ਪਰ ਸੰਘਣੀਆਂ ਗੇਂਦਾਂ ਕਿਸੇ ਬਰੀਕ ਤਾਰ ਉੱਤੇ ਲਟਕਾਈਆਂ ਗਈਆਂ, ਜੋ ਇੱਕ ਟੌਰਿਜ਼ਨ ਸੰਤੁਲਨ ਬਣਾਉਂਦੀਆਂ ਸਨ। ਗੇਂਦਾਂ ਦੇ ਨਜ਼ਦੀਕ ਦੋ ਵਿਸ਼ਾਲ ਟੈਸਟ ਪੁੰਜਾਂ ਨੂੰ ਲਿਆਉਣਾ ਇੱਕ ਪਛਾਣਯੋਗ ਟੌਰਕ ਪੈਦਾ ਕਰਦਾ ਹੈ। ਯੰਤਰਾਂ ਅਤੇ ਟੌਰੀਜ਼ਨ ਤਾਰ ਦੇ ਨਾਪਣਯੋਗ ਸਪ੍ਰਿੰਗ ਸਥਿਰਾਂਕ ਦੇ ਅਯਾਮ ਦਿੱਤੇ ਹੋਣ ਤੇ, ਗਰੈਵੀਟੇਸ਼ਨਲ ਸਥਿਰਾਂਕ G ਨੂੰ ਨਿਰਧਾਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
ਟੈਸਟ ਪੁੰਜਾਂ ਨੂੰ ਦਬਾਉਣ ਸਦਕਾ ਪ੍ਰੈੱਸ਼ਰ ਅਸਰਾਂ ਦਾ ਅਧਿਐਨ ਕਰਨਾ ਉਮੀਦਹੀਣ ਹੈ, ਕਿਉਂਕਿ ਪ੍ਰਾਪਤ ਕੀਤੇ ਜਾਣਯੋਗ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਪ੍ਰੈੱਸ਼ਰ ਕਿਸੇ ਧਾਤੂ ਦੀ ਗੇਂਦ ਦੀ ਪੁੰਜ-ਊੇਰਜਾ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਨਹੀਂ ਹੁੰਦੇ। ਫੇਰ ਵੀ, ਐਟੌਮਿਕ ਨਿਊਕਲੀਆਇ ਅੰਦਰਲੇ ਕਸ ਕੇ ਨਪੀੜੇ ਜਾ ਰਹੇ ਪ੍ਰੋਟੌਨਾਂ ਤੋਂ ਪੈਦਾ ਹੋਏ ਧੱਕਣ ਵਾਲ਼ੇ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਪ੍ਰੈੱਸ਼ਰ ਵਿਸ਼ੇਸ਼ ਤੌਰ ਤੇ 1028 atm ≈ 1033 Pa ≈ 1033 kg·s−2m−1 ਦੇ ਦਰਜੇ ਤੱਕ ਦੇ ਹੁੰਦੇ ਹਨ। ਇਹ ਨਿਊਕਲੀਅਰ ਪੁੰਜ ਘਣਤਾ ਦਾ ਲੱਗਪਗ 1% ਹੁੰਦੇ ਹਨ ਜੋ ਤਕਰੀਬਨ 1018kg/m3 (c2 ≈ 9×1016m2s−2 ਵਿੱਚ ਫੈਕਟਰ ਕਰਨ ਤੋਂ ਬਾਦ) ਹੁੰਦੇ ਹਨ।[59]
ਜੇਕਰ ਪ੍ਰੈੱਸ਼ਰ ਕਿਸੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਸੋਮੇ ਦੇ ਤੌਰ ਤੇ ਕ੍ਰਿਆ ਨਾ ਕਰਨ ਵਾਲ਼ਾ ਹੁੰਦਾ, ਤਾਂ ਅਨੁਪਾਤ ਉੱਚੇ ਐਟੌਮਿਕ ਨੰਬਰ Z ਵਾਲੇ ਨਿਊਕਲੀਆਈਆਂ ਵਾਸਤੇ ਘੱਟ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ, ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕ ਪ੍ਰੈੱਸ਼ਰ ਉੱਚੇ ਹੁੰਦੇ ਹਨ। ਐੱਲ. ਬੀ. ਕ੍ਰੀਊਜ਼ਰ (1968) ਨੇ ਟੈਫਲੌਨ (ਚਿੱਤਰ. 5‑9b) ਜਿੰਨੀ ਬਾਇਓਐਂਟ ਘਣਤਾ ਰੱਖਣ ਵਾਲੇ ਤਰਲਾਂ ਟ੍ਰਾਈਕਲੋਰੋਇਥਲੀਨ ਅਤੇ ਡਾਈਬ੍ਰੋਮੋਈਥੇਨ ਦੇ ਇੱਕ ਮਿਸ਼ਰਣ ਵਿੱਚ ਲਟਕਾਏਇੱਕ ਟੈਫਲੌਨ ਪੁੰਜ ਨੂੰ ਵਰਤਦੇ ਹੋਏ ਇੱਕ ਕੈਵੈਂਡਿਸ਼ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਫਲੋਰੀਨ ਦਾ ਪ੍ਰਮਾਣੂ ਨੰਬਰ Z = 9 ਹੁੰਦਾ ਹੈ, ਜਦੋਂਕਿ ਬ੍ਰੋਮੀਨ ਦਾ Z = 35 ਹੁੰਦਾ ਹੈ। ਕ੍ਰੀਊਜ਼ਰ ਨੇ ਖੋਜਿਆ ਕਿ ਟੈਫਲੌਨ ਪੁੰਜ ਦਾ ਪੁਨਰਸਥਾਨੀਕਰਨ ਟੌਰਿਜ਼ਨ ਬਾਰ ਦਾ ਕੋਈ ਡਿਫ੍ਰੈਂਸ਼ੀਅਲ ਡਿਫਲੈਕਸ਼ਨ ਨਹੀਂ ਪੈਦਾ ਕਰਦੇ, ਇਸ ਲਈ ਐਕਟਿਵ ਪੁੰਜ ਅਤੇ ਪੈੱਸਿਵ ਪੁੰਜ ਨੂੰ 5×10−5 ਦੀ ਇੱਕ ਸ਼ੁੱਧਤਾ ਦੇ ਬਰਾਬਰ ਤੱਕ ਸਥਾਪਿਤ ਕਰਦੇ ਹਨ।[60]
ਭਾਵੇਂ ਕਰੀਊਜ਼ਰ ਨੇ ਮੌਲਿਕ ਤੌਰ ਤੇ ਇਸ ਪ੍ਰਯੋਗ ਨੂੰ ਸਿਰਫ ਐਕਟਿਵ ਪੁੰਜ ਦੇ ਪੈੱਸਿਵ ਪੁੰਜ ਪ੍ਰਤਿ ਅਨੁਪਾਤ ਦੇ ਇੱਕ ਟੈਸਟ ਦੇ ਰੂਪ ਵਿੱਚ ਹੀ ਲਿਆ ਸੀ, ਤਾਂ ਵੀ ਕਲਿੱਫੋਰਡ ਵਿੱਲ (1976) ਨੇ ਇਸ ਪ੍ਰਯੋਗ ਨੂੰ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡਾਂ ਪ੍ਰਤਿ ਸੋਮਿਆਂ ਦੀ ਕਪਲਿੰਗ ਦੇ ਇੱਕ ਬੁਨਿਆਦੀ ਟੈਸਟ ਦੇ ਤੌਰ ਤੇ ਪੁਨਰ-ਵਿਆਖਿਅਤ ਕੀਤਾ।[61]
1986 ਵਿੱਚ, ਬਾਰਲੈੱਟ ਅਤੇ ਵਾਨ ਬੁਰਾਨ ਨੇ ਨੋਟ ਕੀਤਾ ਕਿ ਲੂਨਰ ਲੇਜ਼ਰ ਰੇਂਜਿੰਗ ਨੇ ਚੰਦ੍ਰਮਾ ਦੇ ਕੇਂਦਰ ਅਤੇ ਪੁੰਜ ਦੇ ਕੇਂਦਰ ਦਰਮਿਆਨ ਇੱਕ 2-ਕਿਲੋਮੀਟਰ ਦਾ ਔਫਸੈੱਟ ਪਛਾਣਿਆ (ਡਿਟੈਕਟ ਕੀਤਾ) ਹੈ। ਇਹ Fe (ਚੰਦ੍ਰਮਾ ਦੀ ਕੋਰ ਅੰਦਰ ਬਹੁਤ ਮਾਤਰਾ ਵਿੱਚ ਛੱਡਿਆ ਹੋਇਆ) ਅਤੇ Al (ਇਸਦੀ ਕ੍ਰਸਟ ਅਤੇ ਪਾਪੜੀ ਵਿੱਚ ਬਹੁਤ ਮਾਤਰਾ ਵਿੱਚ) ਦੀ ਵਿਸਥਾਰ-ਵੰਡ ਵਿੱਚ ਇੱਕ ਅਸਮਰੂਪਤਾ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦਾ ਹੈ। ਜੇਕਰ ਪ੍ਰੈੱਸ਼ਰ ਨੇ ਪੁੰਜ-ਊਰਜਾ ਦੀ ਤਰਾਂ ਸਪੇਸਟਾਈਮ ਕਰਵੇਚਰ ਪ੍ਰਤਿ ਬਰਾਬਰ ਤੌਰ ਤੇ ਯੋਗਦਾਨ ਨਾ ਪਾਇਆ ਹੁੰਦਾ, ਤਾਂ ਚੰਦ੍ਰਮਾ ਨੇ ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਸਦਕਾ ਅਨੁਮਾਨਿਤ ਚੱਕਰਪਥ ਵਿੱਚ ਨਹੀਂ ਹੋਣਾ ਸੀ। ਉਹਨਾਂ ਨੇ ਐਕਟਿਵ ਅਤੇ ਪੈੱਸਿਵ ਪੁੰਜ ਦਰਮਿਆਨ ਕਿਸੇ ਵੀ ਤਰਾਂ ਦੀਆਂ ਬੇਮੇਲਤਾਵਾਂ ਉੱਤੇ ਹੱਦਾਂ ਨੂੰ 1×10−12 ਤੱਕ ਕਸਣ ਲਈ ਅਪਣੇ ਨਾਪਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ।[62]
• ਗ੍ਰੈਵੀਟੋ-ਚੁੰਬਕਤਾ
[ਸੋਧੋ]ਗ੍ਰੈਵਿਟੋ-ਚੁੰਬਕਤਾ ਦੀ ਹੋਂਦ ਗਰੈਵਿਟੀ ਪ੍ਰੋਬ B (GP-B) ਦੁਆਰਾ ਸਾਬਤ ਕੀਤੀ ਗਈ ਸੀ, ਜੋ ਇੱਕ ਸੈਟੇਲਾਈਟ-ਅਧਾਰਿਤ ਮਿਸ਼ਨ ਸੀ, ਜੋ 20 ਅਪਰੈਲ 2004 ਨੂੰ ਲੌਂਚ ਕੀਤਾ ਗਿਆ ਸੀ।[63] ਸਪੇਸ-ਉਡਾਨ ਫੇਜ਼ (ਅਵਸਥਾ) ਤੱਕ ਰਹੀ ਸੀ। ਮਿਸ਼ਨ ਦਾ ਮੰਤਵ, ਗ੍ਰੈਵਿਟੋ-ਚੁੰਬਕਤਾ ਉੱਤੇ ਖਾਸ ਜੋਰ ਦਿੰਦੇ ਹੋਏ, ਧਰਤੀ ਨਜ਼ਦੀਕ ਸਪੇਸਟਾਈਮ ਕਰਵੇਚਰ ਨਾਪਣਾ ਸੀ।
ਅਰੰਭਿਕ ਨਤੀਜਿਆ ਨੇ ਤੁਲਨਾਤਮਿਕ ਤੌਰ ਤੇ ਵਿਸ਼ਾਲ ਜੀਓਡੈਟਿਕ ਪ੍ਰਭਾਵ ਨੂੰ ਤਕਰੀਬਨ 1% ਦੀ ਇੱਕ ਸ਼ੁੱਧਤਾ ਨਾਲ ਸਾਬਤ ਕੀਤਾ ਸੀ (ਜੋ ਸਰਲ ਸਪੇਸਟਾਈਮ ਕਰਵੇਚਰ ਕਾਰਨ ਸੀ, ਅਤੇ ਇਸ ਨੂੰ ਡੀ ਸਿੱਟਰ ਪ੍ਰੀਸੈਸ਼ਨ ਦੇ ਤੌਰ ਤੇ ਵੀ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ)। ਬਹੁਤ ਛੋਟਾ ਫ੍ਰੇਮ-ਡ੍ਰੈਗਿੰਗ ਪ੍ਰਭਾਵ (ਜੋ ਗ੍ਰੈਵਿਟੋ-ਚੁੰਬਕਤਾ ਕਾਰਨ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਸਨੂੰ ਲੈਂਜ਼-ਥਰਿੰਗ ਪ੍ਰੀਸੈਸ਼ਨ ਦੇ ਤੌਰ ਤੇ ਵੀ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ), ਜਾਇਰੋਸਕੋਪਾਂ ਵਿੱਚ ਵੇਰੀਏਬਲ ਡ੍ਰਿਫਟ ਪੈਦਾ ਕਰਨ ਵਾਲੇ ਨਾਉਮੀਦ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਚਾਰਜ ਪ੍ਰਭਾਵਾਂ ਦੇ ਕਾਰਨ ਨਾਪਣਾ ਕਠਿਨ ਸੀ। ਹੋਰ ਤਾਂ ਹੋਰ, ਤੱਕ, ਫ੍ਰੇਮ ਡ੍ਰੈਗਿੰਗ ਪ੍ਰਭਾਵ ਉਮੀਦ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਨਤੀਜੇ ਦੇ 15% ਅੰਦਰ ਤੱਕ ਸਾਬਤ ਹੋ ਚੁੱਕੇ ਸਨ,[64] ਜਦੋਂਕਿ ਜੀਓਡੈਟਿਕ ਪ੍ਰਭਾਵ 0.5% ਤੋਂ ਜਿਆਦਾ ਚੰਗਾ ਸਾਬਤ ਹੋ ਚੁੱਕਾ ਸੀ।[65][66]
LARES, LAGEOS-1 ਅਤੇ LAGEOS-2 ਸੈਟੇਲਾਈਟਾਂ ਦੀਆਂ ਲੇਜ਼ਰ-ਰੇਂਜਿੰਗ ਜਾਂਚਾਂ-ਪੜਤਾਲਾਂ (ਨਿਰੀਖਣਾਂ) ਸਦਕਾ ਫ੍ਰੇਮ ਡ੍ਰੈਗਿੰਗ ਦੇ ਅਗਲੇ ਨਾਪਾਂ ਨੇ GP-B ਨਾਪ ਉੱਤੇ ਸੁਧਾਰ ਲਿਆਂਦਾ, ਜਿਹਨਾਂ ਦੇ ਜਿਮੇਵਾਰ ਨਤੀਜੇ ਇਸਦੀ ਸਿਧਾਂਤਿਕ ਕੀਮਤ ਦੇ 5% ਅੰਦਰ ਤੱਕ ਦੇ ਪ੍ਰਭਾਵ ਸਾਬਤ ਕਰਦੇ ਸਨ,[67] ਭਾਵੇਂ ਇਸ ਨਤੀਜੇ ਦੀ ਸ਼ੁੱਧਤਾ ਉੱਤੇ ਕੁੱਝ ਅਸਹਮਿਤੀ ਰਹੀ ਹੈ।[68]
ਇੱਕ ਹੋਰ ਯਤਨ, ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ ਜਾਇਰੋਸਕੋਪਾਂ ਪ੍ਰਯੋਗ, ਇਸ ਪ੍ਰਭਾਵ ਨੂੰ ਨਾਪਣ ਲਈ ਧਰਤੀ ਦੀ ਸਤਹਿ ਤੋਂ 1400 m ਥੱਲੇ ਇੱਕ ਦੂਜੇ ਤੋਂ ਸਮਕੋਣਾਂ ਉੱਤੇ ਸਥਿਤ ਤਿੰਨ 6 m ਰਿੰਗ ਲੇਜ਼ਰਾਂ ਦੀ ਮੰਗ ਕਰਦਾ ਹੈ।[69][70]
ਤਕਨੀਕੀ ਪ੍ਰਸੰਗ
[ਸੋਧੋ]ਰੀਮਾਨੀਅਨ ਜੀਓਮੈਟ੍ਰੀ
[ਸੋਧੋ]
ਰੀਮਾਨੀਅਨ ਜੀਓਮੈਟ੍ਰੀ ਬਰਨਹਾਰਡ ਰੀਮਾੱਨ ਦੇ ਉਦਘਾਟਨੀ ਲੈਕਚਰ "Ueber die Hypothesen, welche der Geometrie zu Grunde liegen" (ਓਸ ਪਰਿਕਲਪਨਾ ਉੱਤੇ ਜਿਸ ਉੱਤੇ ਰੇਖਾਗਣਿਤ ਅਧਾਰਿਤ ਹੈ) ਵਿੱਚ ਦਰਸਾਏ ਵਿਚਾਰਾਂ ਤੋਂ ਸ਼ੁਰੂ ਹੋਈ ਸੀ। ਇਹ R3 ਵਿੱਚ ਸਰਫੇਸਾਂ ਦੀ ਡਿਫ੍ਰੈਂਸ਼ੀਅਲ ਜੀਓਮੈਟ੍ਰੀ ਦਾ ਇੱਕ ਬਹੁਤ ਵਿਸ਼ਾਲ ਅਤੇ ਅਮੂਰਤ ਸਰਵ ਸਧਾਰਨਕਰਨ ਹੈ। ਰੀਮਾਨੀਅਨ ਜੀਓਮੈਟ੍ਰੀ ਦੇ ਵਿਕਾਸ ਨੇ ਉੱਚ ਅਯਾਮਾਂ ਵਾਲੇ ਡਿਫ੍ਰੈਂਸ਼ੀਏਬਲ ਮੈਨੀਫੋਲਡਾਂ ਦੇ ਅਧਿਐਨ ਪ੍ਰਤਿ ਲਾਗੂ ਹੋ ਸਕਣ ਵਾਲ਼ੀਆਂ ਤਕਨੀਕਾਂ ਨਾਲ, ਸਰਫੇਸਾਂ ਦੇ ਰੇਖਾਗਣਿਤ ਅਤੇ ਇਹਨਾਂ ਉੱਤੇ ਜੀਓਡੈਸਿਕਾਂ ਦੇ ਵਰਤਾਓ ਨਾਲ ਸਬੰਧਤ ਵੰਨ-ਸੁਵੰਨੇ ਨਤੀਜਿਆਂ ਦੇ ਮੇਲ ਨੂੰ ਜਨਮ ਦਿੱਤਾ। ਇਸ ਨੇ ਅਲਬਰਟ ਆਈਨਸਟਾਈਨ ਦੀ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਥਿਊਰੀ ਦੀ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਨੂੰ ਸੰਭਵ ਕੀਤਾ, ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਨਾਲ ਨਾਲ, ਗਰੁੱਪ ਥਿਊਰੀ ਅਤੇ ਪ੍ਰਸਤੁਤੀ ਥਿਊਰੀ ਉੱਤੇ ਗਹਿਰਾ ਪ੍ਰਭਾਵ ਪਾਇਆ, ਅਤੇ ਅਲਜਬ੍ਰਿਕ ਅਤੇ ਡਿਫ੍ਰੈਂਸ਼ੀਅਲ ਟੌਪੌਲੌਜੀ ਦੇ ਵਿਕਾਸ ਨੂੰ ਉਤਸ਼ਾਹਿਤ ਕੀਤਾ।
ਵਕਰਿਤ ਮੈਨੀਫੋਲਡਾਂ
[ਸੋਧੋ]
ਭੌਤਿਕੀ ਕਾਰਨਾਂ ਕਰਕੇ, ਇੱਕ ਸਪੇਸਟਾਈਮ ਕੰਟੀਨੁਮ ਗਣਿਤਿਕ ਤੌਰ ਤੇ ਇੱਕ ਚਾਰ-ਅਯਾਮੀ, ਸੁਚਾਰੂ, ਜੁੜੇ ਹੋਏ ਲੌਰੰਟਜ਼ ਮੈਨੀਫੋਲਡ ਦੇ ਤੌਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸਦਾ ਅਰਥ ਹੈ ਸੁਚਾਰੂ ਲੌਰੰਟਜ਼ ਮੈਟ੍ਰਿਕ ਦਾ ਸਿਗਨੇਚੁਰ ਹੁੰਦਾ ਹੈ। ਮੈਟ੍ਰਿਕ, ਸਪੇਸਟਾਈਮ ਦੀ ਜੀਓਮੈਟ੍ਰੀ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਦਾ ਹੈ, ਅਤੇ ਨਾਲ ਨਾਲ ਕਣਾਂ ਅਤੇ ਪ੍ਰਕਾਸ਼ ਕਿਰਨਾਂ ਦੇ ਜੀਓਡੈਸਿਕਾਂ ਨੂੰ ਵੀ ਨਿਰਧਾਰਿਤ ਕਰਦਾ ਹੈ। ਇਸ ਮੈਨੀਫੋਲਡ ਉੱਤੇ ਹਰੇਕ ਬਿੰਦੂ (ਘਟਨਾ) ਬਾਰੇ, ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ ਅੰਦਰ ਔਬਜ਼ਰਵਰਾਂ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਨ ਵਾਸਤੇ ਨਿਰਦੇਸ਼ਾਂਕ ਚਾਰਟਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਆਮਤੌਰ ਤੇ, ਕਾਰਟੀਜ਼ੀਅਨ ਨਿਰਦੇਸ਼ਾਂਕ ਵਰਤੇ ਜਾਂਦੇ ਹਨ। ਹੋਰ ਤਾਂ ਹੋਰ, ਸਰਲਤਾ ਲਈ, ਨਾਪ ਦੀਆਂ ਇਕਾਈਆਂ ਅਜਿਹੀਆਂ ਚੁਣੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ਕਿ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ = 1 ਬਰਾਬਰ ਰਹੇ।[71]
ਕਿਸੇ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ (ਔਬਜ਼ਰਵਰ) ਨੂੰ ਇਹਨਾਂ ਨਿਰਦੇਸ਼ਾਂਕ ਚਾਰਟਾਂ ਵਿੱਚੋਂ ਇੱਕ ਦੇ ਤੌਰ ਤੇ ਪਛਾਣਿਆ ਜਾ ਸਕਦਾ ਹੈ; ਕੋਈ ਵੀ ਅਜਿਹਾ ਔਬਜ਼ਰਵਰ ਕਿਸੇ ਘਟਨਾ ਨੂੰ ਦਰਸਾ ਸਕਦਾ ਹੈ। ਬਾਰੇ ਇੱਕ ਦੂਜੇ ਨਿਰਦੇਸ਼ਾਂਕ ਚਾਰਟ ਰਾਹੀਂ ਇੱਕ ਹੋਰ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਨੂੰ ਪਛਾਣਿਆ ਜਾ ਸਕਦਾ ਹੈ। (ਹਰੇਕ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਵਿੱਚੋਂ ਇੱਕ) ਦੋ ਔਬਜ਼ਰਵਰ ਇੱਕੋ ਘਟਨਾ ਨੂੰ ਦਰਸਾ ਸਕਦੇ ਹਨ ਪਰ ਵਖਰੀਆਂ ਵਿਆਖਿਆਵਾਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ।[71]
ਆਮਤੌਰ ਤੇ, ਕਿਸੇ ਮੈਨੀਫੋਲਡ ਨੂੰ ਕਵਰ ਕਰਨ ਲਈ ਕਈ ਓਵਰਲੈਪ ਕਰਨ ਵਾਲੇ ਨਿਰਦੇਸ਼ਾਂਕ (ਕੋਆਰਡੀਨੇਟ) ਚਾਰਟਾਂ ਦੀ ਲੋੜ ਪੈਂਦੀ ਹੈ। ਦੋ ਨਿਰਦੇਸ਼ਾਂਕ ਚਾਰਟਾਂ ਦੇ ਦਿੱਤੇ ਹੋਣ ਤੇ, ਜਿਹਨਾਂ ਵਿੱਚ ਇੱਕ ਵਿੱਚ ਹੋਵੇ (ਜੋ ਕਿਸੇ ਔਬਜ਼ਰਵਰ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰ ਰਿਹਾ ਹੋਵੇ) ਅਤੇ ਇੱਕ ਹੋਰ ਜੋ ਰੱਖਦਾ ਹੈ (ਜੋ ਕਿਸੇ ਹੋਰ ਔਬਜ਼ਰਵਰ ਨੂੰ ਪੇਸ਼ ਕਰਦਾ ਹੈ।), ਚਾਰਟਾਂ ਦੀ ਕਾਟ (ਇੰਟਰਸੈਕਸ਼ਨ) ਸਪੇਸਟਾਈਮ ਦਾ ਉਹ ਖੇਤਰ ਪ੍ਰਸਤੁਤ ਕਰਦੀ ਹੈ ਜਿਸ ਵਿੱਚ ਦੋਵੇਂ ਔਬਜ਼ਰਵਰ ਭੌਤਿਕੀ ਮਾਤ੍ਰਾਵਾਂ ਨਾਪ ਸਕਦੇ ਹੋਣ ਅਤੇ ਇਸਤਰਾਂ ਨਤੀਜਿਆਂ ਦੀ ਤੁਲਨਾ ਕਰ ਸਕਦੇ ਹੋਣ। ਨਾਪਾਂ ਦੇ ਦੋ ਸੈੱਟਾਂ ਦਰਮਿਆਨ ਸਬੰਧ ਇਸ ਕਾਟ-ਬਿੰਦੂ ਉੱਤੇਇੱਕ ਗੈਰ-ਸਿੰਗੁਲਰ ਨਿਰਦੇਸ਼ਾਂਕ ਰੂਪਾਂਤ੍ਰਨ ਰਾਹੀਂ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਅਜਿਹੇ ਸਥਾਨਿਕ ਔਬਜ਼ਰਵਰਾਂ ਦੇ ਤੌਰ ਤੇ ਨਿਰਦੇਸ਼ਾਂਕ ਚਾਰਟਾਂ ਦਾ ਵਿਚਾਰ ਜੋ ਅਪਣੇ ਆਸਪਾਸ ਵਿੱਚ ਨਾਪ ਲੈ ਸਕਦੇ ਹੋਣ ਚੰਗੀ ਭੌਤਿਕੀ ਸਮਝ ਵੀ ਪੈਦਾ ਕਰਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਵੇਂ ਹੀ ਸੱਚਮੁੱਚ ਭੌਤਿਕੀ ਆਂਕੜੇ ਨੂੰ ਸਥਾਨਿਕ ਤੌਰ ਤੇ ਇਕੱਠਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।[71]
ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਦੋ ਔਬਜ਼ਰਵਰ, ਜਿਹਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਧਰਤੀ ਉੱਤੇ ਹੁੰਦਾ ਹੈ, ਪਰ ਦੂਜਾ ਔਬਜ਼ਰਵਰ ਜੂਪੀਟਰ ਵੱਲ ਕਿਸੇ ਤੇਜ਼ ਗਤੀ ਵਾਲੇ ਰਾਕੇਟ ਉੱਤੇ ਹੁੰਦਾ ਹੈ, ਜੂਪੀਟਰ ਵਿੱਚ ਕਿਸੇ ਧੁਮਕੇਤੂ ਦੇ ਕ੍ਰੈਸ਼ ਹੋਣ ਨੂੰ ਦੇਖ ਸਕਦੇ ਹਨ (ਇਹ ਘਟਨਾ ਹੈ)। ਆਮਤੌਰ ਤੇ, ਇਹ ਇਸ ਪ੍ਰਭਾਵ ਦੇ ਇੰਨਬੁੰਨ ਸਥਿਤੀ ਅਤੇ ਟਾਈਮਿੰਗ ਬਾਬਤ ਅਸਹਿਮਤ ਰਹਿਣਗੇ, ਯਾਨਿ ਕਿ, ਉਹਨਾਂ ਕੋਲ ਵੱਖਰੇ 4-ਟੁਪਲ ਹੋਣਗੇ (ਕਿਉਂਕਿ ਉਹ ਵੱਖਰੇ “ਕੋ-ਆਰਡੀਨੇਟ ਸਿਸਟਮ” ਵਰਤ ਰਹੇ ਹੁੰਦੇ ਹਨ।) ਭਾਵੇਂ ਉਹਨਾਂ ਦੀ ਕਾਇਨਾਮੈਟਿਕਸ ਵਿਆਖਿਆ ਵੱਖਰੀ ਹੋਵੇਗੀ, ਫੇਰ ਵੀ ਡਾਇਨਾਮਿਕਲ (ਭੌਤਿਕੀ) ਨਿਯਮ, ਜਿਵੇਂ ਮੋਮੈਂਟਮ ਸੁਰੱਖਿਅਤਾ ਅਤੇ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦਾ ਪਹਿਲਾ ਨਿਯਮ, ਅਜੇ ਵੀ ਲਾਗੂ ਖੜਨਗੇ। ਦਰਅਸਲ, ਰਿਲੇਟੀਵਿਟੀ ਥਿਊਰੀ ਇਸ ਸਮਝ ਮੁਤਾਬਿਕ ਇਸਤੋਂ ਹੋਰ ਜਿਆਦਾ ਮੰਗਦੀ ਹੈ ਕਿ ਇਹ ਇਹਨਾਂ (ਅਤੇ ਹੋਰ ਸਾਰੇ ਭੌਤਿਕੀ) ਨਿਯਮਾਂ ਦੀ ਮੰਗ ਕਰਦੀ ਹੈ ਕਿ ਇਹ ਸਾਰੇ ਨਿਰਦੇਸ਼ਾਂਕ ਸਿਸਟਮਾਂ ਵਿੱਚ ਇੱਕੋ ਰੂਪ ਲੈਣੇ ਚਾਹੀਦੇ ਹਨ। ਇਹ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ ਟੈਂਸਰਾਂ ਨੂੰ ਪੇਸ਼ ਕਰਦੀ ਹੈ, ਜਿਹਨਾਂ ਦੁਆਰਾ ਸਾਰੀਆਂ ਮਾਤ੍ਰਾਵਾਂ ਪ੍ਰਸਤੁਤ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।
ਜੀਓਡੈਸਿਕਾਂ ਨੂੰ ਟਾਈਮ-ਲਾਈਕ, ਨੱਲ, ਜਾਂ ਸਪੇਸ-ਲਾਈਕ ਕਿਹਾ ਜਾਂਦਾ ਜਾਂਦਾ ਹੈ ਜੇਕਰ ਜੀਓਡੈਸਿਕ ਦੇ ਕਿਸੇ ਬੁੰਦੂ ਪ੍ਰਤਿ ਸਪਰਸ਼ ਵੈਕਟਰ ਇਸ ਫਿਤਰਤ ਦਾ ਹੋਵੇ। ਕਣਾਂ ਦੇ ਰਸਤੇ ਅਤੇ ਪ੍ਰਕਾਸ਼ ਕਿਰਨਾਂ ਸਪੇਸਟਾਈਮ ਅੰਦਰ, ਕ੍ਰਮਵਾਰ, ਟਾਈਮ-ਲਾਈਕ ਅਤੇ ਨੱਲ (ਲਾਈਟ-ਲਾਈਕ) ਜੀਓਡੈਸਿਕਾਂ ਰਾਹੀਂ ਪ੍ਰਸਤੁਤ ਕੀਤੇ ਜਾਂਦੇ ਹਨ।[71]
3+1 ਸਪੇਸਟਾਈਮ ਦਾ ਵਿਸ਼ੇਸ਼ਾਧਿਕਾਰਾਂ ਵਾਲਾ ਕਿਰਦਾਰ
[ਸੋਧੋ]
ਅਯਾਮਾਂ ਦੀਆਂ ਦੋ ਕਿਸਮਾਂ ਹੁੰਦੀਆਂ ਹਨ, ਸਪੈਸ਼ੀਅਲ (ਦੋ-ਦਿਸ਼ਾਈ) ਅਤੇ ਟੈਂਪ੍ਰਲ (ਇੱਕ-ਦਿਸ਼ਾਈ) । ਮੰਨ ਲਓ ਸਪੈਸ਼ੀਅਲ ਅਯਾਮਾਂ ਦੀ ਗਿਣਤੀ N ਹੋਵੇ ਅਤੇ ਟੈਂਪ੍ਰਲ ਅਯਾਮਾਂ ਦੀ T ਹੋਵੇ । ਕਿ N = 3 ਹੈ ਅਤੇ T = 1 ਹੈ, ਸਟ੍ਰਿੰਗ ਥਿਊਰੀ ਰਾਹੀਂ ਸੱਦੇ ਗਏ ਕੰਪੈਕਟੀਫਾਈ ਕੀਤੇ ਹੋਏ ਅਯਾਮਾਂ ਅਤੇ ਅੱਜਤੱਕ ਗੈਰ-ਪਛਾਣਯੋਗ ਹੋਰ ਅਯਾਮਾਂ ਨੂੰ ਪਾਸੇ ਰੱਖਦੇ ਹੋਏ, N ਦੇ 3 ਤੋਂ ਵੱਖਰਾ ਹੋਣ ਅਤੇ T ਦਾ 1 ਤੋਂ ਵੱਖਰਾ ਹੋਰ ਨੰਬਰ ਹੋਣ ਦੇ ਭੌਤਿਕੀ ਨਤੀਜਿਆਂ ਪ੍ਰਤਿ ਖਿੱਚ ਸਦਕਾ ਸਮਝਾਏ ਜਾ ਸਕਦੇ ਹਨ। ਇਹ ਤਰਕ ਅਕਸਰ ਇੱਕ ਐਂਥ੍ਰੌਪਿਕ ਕਿਰਦਾਰ ਵਾਲ਼ਾ ਹੈ ਅਤੇ ਸੰਭਵ ਤੌਰ ਤੇ ਅਪਣੀ ਕਿਸਮ ਦਾ ਪਹਿਲਾ ਹੈ, ਭਾਵੇਂ ਪੂਰੀ ਧਾਰਨਾ ਦਾ ਰੀਵਾਜ਼ ਚੱਲਣ ਤੋਂ ਪਹਿਲਾਂ ਦਾ ਹੈ। ਇੱਮੈਨੁਇਲ ਕਾਂਤ ਨੇ ਤਰਕ ਕੀਤਾ ਕਿ 3-ਅਯਾਮੀ ਸਪੇਸਟਾਈਮ ਬ੍ਰਹਮੰਡੀ ਗਰੈਵੀਟੇਸ਼ਨ ਦੇ ਇਨਵਰਸ ਸਕੁਏਅਰ ਨਿਯਮ ਦਾ ਹੀ ਇੱਕ ਨਤੀਜਾ ਹੈ। ਜਦੋਂਕਿ ਕਾਂਤ ਦਾ ਤਰਕ ਇਤਿਹਾਸਿਕ ਤੌਰ ਤੇ ਮਹੱਤਵਪੂਰਨ ਹੈ, ਜੌਹਨ ਡੀ ਬੌਰੌ ਕਹਿੰਦਾ ਹੈ ਕਿ ਇਹ "[...] ਪਿੱਛੇ ਤੋਂ ਮੂਹਰੇ ਤੱਕ ਪੰਚਲਾਈਨ ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ: ਇਹ ਸਪੇਸਟਾਈਮ ਦੀ ਤਿੰਨ-ਅਯਾਮੀ ਹੋਣਾ ਹੀ ਹੈ ਜੋ ਸਮਝਾਉਂਦਾ ਹੈ ਕਿ ਅਸੀਂ ਕੁਦਰਤ ਅੰਦਰ ਇਨਵਰਸ ਸਕੁਏਅਰ ਫੋਰਸ ਨਿਯਮ ਦੇਖਦੇ ਹਾਂ, ਇਸਦਾ ਉਲਟ ਨਹੀਂ ਦੇਖਦੇ (ਬੈਰੋ 2002: 204). ਅਜਿਹਾ ਇਸਲਈ ਹੈ ਕਿਉਂਕਿ ਗਰੈਵੀਟੇਸ਼ਨ ਦਾ (ਜਾਂ ਕੋਈ ਵੀ ਹੋਰ ਇਨਵਰਸ-ਸਕੁਏਅਰ ਨਿਯਮ) ਨਿਯਮ ਫਲੱਕਸ ਦੀ ਫਲੱਕਸ, ਅਤੇ, ਫਲੱਕਸ ਡੈਂਸਟੀ ਅਤੇ ਫੀਲਡ ਦੀ ਤਾਕਤ ਦੇ ਅਨੁਪਾਤਿਕ ਸਬੰਧ ਤੋਂ ਪਤਾ ਚਲਦੇ ਹਨ। ਜੇਕਰ N = 3 ਹੁੰਦਾ ਹੈ, ਤਾਂ 3-ਅਯਾਮੀ ਠੋਸ ਵਸਤੂਆਂ ਦੇ ਸਰਫੇਸ ਖੇਤਰਫਲ ਕਿਸੇ ਵੀ ਚੁਣੇ ਹੋਏ ਸਪੈਸ਼ੀਅਲ ਅਯਾਮ ਅੰਦਰਲੇ ਉਹਨਾਂ ਦੇ ਅਕਾਰ ਦੇ ਵਰਗ ਪ੍ਰਤਿ ਅਨੁਪਾਤੀ ਹੁੰਦੇ ਹਨ। ਖਾਸ ਕਰਕੇ, ਰੇਡੀਅਸ r ਦਾ ਖੇਤਰਫਲ 4πr ² ਹੁੰਦਾ ਹੈ। ਹੋਰ ਆਮਤੌਰ ਤੇ, N ਅਯਾਮਾਂ ਵਾਲੀ ਕਿਸੇ ਸਪੇਸ ਅੰਦਰ, r ਦੀ ਦੂਰੀ ਰਾਹੀਂ ਵੱਖਰੀਆਂ ਦੋ ਚੀਜ਼ਾਂ ਦਰਮਿਆਨ ਗਰੈਵੀਟੇਸ਼ਨਲ ਖਿੱਚ ਦੀ ਤਾਕਤ, rN−1 ਦੇ ਉਲਟ-ਅਨੁਪਾਤੀ ਹੁੰਦੀ ਹੈ।
1920 ਵਿੱਚ, ਪੌਲ ਐਹਰਨਫੈਸਟ ਨੇ ਦਿਖਾਇਆ ਕਿ ਸਿਰਫ ਇੱਕੋ ਟਾਈਮ ਅਯਾਮ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਤਿੰਨ ਸਪੈਸ਼ੀਅਲ ਅਯਾਮਾਂ ਤੋਂ ਜਿਆਦਾ ਹੋਣ ਤੇ, ਕਿਸੇ ਗ੍ਰਹਿ ਦਾ ਉਸਦੇ ਸੂਰਜ ਦੁਆਲ਼ੇ ਔਰਬਿਟ ਸਥਿਰ ਨਹੀਂ ਰਹਿ ਸਕਦਾ । ਕਿਸੇ ਤਾਰੇ ਦੇ ਅਪਣੀ ਗਲੈਕਸੀ ਦੇ ਕੇਂਦਰ ਦੁਆਲੇ ਦੇ ਔਰਬਿਟ ਬਾਰੇ ਵੀ ਇਹੀ ਸੱਚ ਹੈ।[72] ਐਹਰਨਫੈਸਟ ਨੇ ਇਹ ਵੀ ਦਿਖਾਇਆ ਕਿ ਜੇਕਰ ਸਪੈਸ਼ੀਅਲ ਅਯਾਮਾਂ ਦੀ ਸੰਖਿਆ ਸਮ (ਇਵਨ) ਹੋਵੇ, ਤਾਂ ਕਿਸੇ ਤਰੰਗ ਛੱਲ ਦੇ ਵੱਖਰੇ ਹਿੱਸੇ ਵੱਖਰੀਆਂ ਸਪੀਡਾਂ ਉੱਤੇ ਯਾਤਰਾ ਕਰਨਗੇ । ਜੇਕਰ ਸਪੈਸ਼ੀਅਲ ਅਯਾਮ ਹੋਣ, ਜਿੱਥੇ k ਕੋਈ ਸੰਪੂਰਨ ਨੰਬਰ ਹੋਵੇ, ਤਾਂ ਤਰੰਗ ਨਬਜ਼ਾਂ ਵਿਗੜ ਜਾਂਦੀਆਂ ਹਨ। 1922 ਵਿੱਚ, ਹਰਮਨ ਵੇਇਲ ਨੇ ਦਿਖਾਇਆ ਕਿ ਇਲੈਕਟ੍ਰੋਮੈਗਨਟਿਜ਼ਮ ਦੀ ਜੇਮਸ ਕਲ੍ਰਕ ਮੈਕਸਵੈੱਲ ਦੀ ਥਿਊਰੀ ਸਿਰਫ ਸਪੇਸ ਦੇ ਤਿੰਨ ਅਯਾਮਾਂ ਅਤੇ ਟਾਈਮ ਦੇ ਇੱਕ ਅਯਾਮ ਨਾਲ ਹੀ ਕੰਮ ਕਰਦੀ ਹੈ।[73] ਅੰਤ ਵਿੱਚ, ਟੈਂਘ੍ਰਲਨੀ ਨੇ 1963 ਵਿੱਚ ਦਿਖਾਇਆ ਕਿ ਜਦੋਂ ਤਿੰਨ ਸਪੈਸ਼ੀਅਲ ਅਯਾਮਾਂ ਤੋਂ ਜਿਆਦਾ ਅਯਾਮ ਹੁੰਦੇ ਹਨ, ਤਾਂ ਨਿਊਕਲੀਆਇ ਦੁਆਲੇ ਦੇ ਇਲੈਕਟ੍ਰੌਨਾਂ ਦੇ ਔਰਬਿਟਲ ਸਟੇਬਲ ਨਹੀਂ ਹੋ ਸਕਦੇ; ਇਲੈਕਟ੍ਰੌਨ ਜਾਂ ਤਾਂ ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਡਿੱਗ ਸਕਦੇ ਹਨ ਜਾਂ ਖਿੰਡ ਜਾਂਦੇ ਹਨ।[74]
ਮੈਕਸ ਟੈਗਮਾਰਕ ਅਗਲੇ ਐਂਥ੍ਰੌਪਿਕ ਅੰਦਾਜ਼ ਵਿੱਚ ਪਿਛਲੇ ਤਰਕ ਨੂੰ ਅੱਗੇ ਵਧਾਉਂਦਾ ਹੈ।[75] ਜੇਕਰ T, 1 ਦੀ ਥਾਂ ਕੁੱਝ ਹੋਰ ਹੋਵੇ, ਤਾਂ ਭੌਤਿਕੀ ਸਿਸਟਮਾਂ ਦਾ ਵਰਤਾਓ ਸਬੰਧਤ ਅੰਸ਼ਿਕ ਡਿਫ੍ਰੈਂਸ਼ੀਅਲ ਇਕੁਏਸ਼ਨਾਂ ਦੀ ਜਾਣਕਾਰੀ ਤੋਂ ਭਰੋਸੇਯੋਗ ਤਰੀਕੇ ਨਾਲ ਅਨੁਮਾਨਿਤ ਨਹੀਂ ਹੋ ਸਕਦੇ ਸਨ। ਅਜਿਹੇ ਕਿਸੇ ਬ੍ਰਹਿਮੰਡ ਅੰਦਰ, ਟੈਕਨੌਲੌਜੀ ਵਰਤਣ ਦੇ ਯੋਗ ਬੁੱਧੀਮਾਨ ਜਿੰਦਗੀ ਪੈਦਾ ਨਹੀਂ ਹੋ ਸਕਣੀ ਸੀ। ਹੋਰ ਤਾਂ ਹੋਰ, ਜੇਕਰ T > 1 ਹੁੰਦਾ, ਤਾਂ ਟੈਗਮਾਰਕ ਅਪਣੀ ਗੱਲ ਕਾਇਮ ਰੱਖਦਾ ਹੈ ਕਿ ਪ੍ਰੋਟੌਨ ਅਤੇ ਇਲੈਕਟ੍ਰੌਨ ਗੈਰ-ਸਟੇਬਲ ਰਹਿਣਗੇ ਅਤੇ ਅਪਣੇ ਆਪ ਤੋਂ ਵਧੇਰੇ ਪੁੰਜ ਵਾਲ਼ੇ ਕਣਾਂ ਵਿੱਚ ਡਿਸੇਅ ਹੋ ਸਕਦੇ ਸਨ। (ਇਹ ਕੋਈ ਸਮੱਸਿਆ ਨਾ ਹੁੰਦੀ ਜੇਕਰ ਕਣਾਂ ਦਾ ਤਾਪਮਾਨ ਕਾਫੀ ਘੱਟ ਹੁੰਦਾ)
ਹਿੱਸਾ ਸਾਰਾਂਸ਼
[ਸੋਧੋ]ਜਾਣ-ਪਛਾਣ ਸਾਰਾਂਸ਼
[ਸੋਧੋ]^ਪਰਿਭਾਸ਼ਾਵਾਂ (ਮੁੱਖ ਸਫ਼ੇ ਦੇ ਪਰਤਣ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ)
- ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਅੰਦਰ, ਸਪੇਸ ਤੋਂ ਸਮਾਂ ਵੱਖਰਾ ਹੁੰਦਾ ਹੈ। ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ, ਸਮਾਂ ਅਤੇ ਸਪੇਸ ਇੱਕ ਦੂਜੇ ਵਿੱਚ ਫਿਊਜ਼ ਹੋ ਕੇ ਕਿਸੇ ਸਿੰਗਲ 4-ਅਯਾਮੀ ਮੈਨੀਫੋਲਡ ਬਣ ਜਾਂਦੇ ਹਨ ਜਿਸਨੂੰ ਸਪੇਸਟਾਈਮ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।
- ਤਕਨੀਕੀ ਸ਼ਬਦ ਮੈਨੀਫੋਲਡ ਅਤੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਵੱਡੀ ਸਪੀਡ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਸਧਾਰਨ ਸਪੀਡਾਂ ਉੱਤੇ, ਬਹੁਤ ਘੱਟ ਬਚਦਾ ਹੈ ਜੋ ਇਨਸਾਨ ਨਿਰੀਖਣ ਕਰ ਸਕਦੇ ਹੋਣਗੇ ਜੋ ਧਿਆਨਯੋਗ ਤੌਰ ਤੇ ਉਸ ਚੀਜ਼ ਤੋਂ ਵੱਖਰਾ ਹੁੰਦਾ ਹੈ ਜਿਸਨੂੰ ਉਹ ਨਿਰੀਖਣ ਕਰ ਸਕਦੇ ਜੇਕਰ ਸੰਸਾਰ ਨੇ ਕੌਮਨ ਸੈਂਸ ਦਾ ਰੇਖਾਗਣਿਤ ਅਪਣਾਇਆ ਹੁੰਦਾ।
- ਚੀਜ਼ਾਂ ਜੋ ਸਪੇਸਟਾਈਮ ਅੰਦਰ ਵਾਪਰਦੀਆਂ ਹਨ ਘਟਨਾਵਾਂ ਪੁਕਾਰੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਘਟਨਾਵਾਂ ਨਮੂਨਾਬੱਧ, ਚਾਰ-ਅਯਾਮੀ ਬਿੰਦੂ ਹੁੰਦੇ ਹਨ। ਗਤੀ ਅਧੀਨ ਕੋਈ ਘਟਨਾ ਵਰਗੀ ਕੋਈ ਚੀਜ਼ ਨਹੀਂ ਹੁੰਦੀ।
- ਸਪੇਸਟਾਈਮ ਅੰਦਰ ਕਿਸੇ ਕਣ ਦਾ ਰਸਤਾ ਘਟਨਾਵਾਂ ਦੀ ਇੱਕ ਲੜੀ ਟ੍ਰੇਸ ਕਰਦਾ ਹੈ, ਜਿਸਨੂੰ ਕਣ ਦੀ ਸੰਸਾਰ ਰੇਖਾ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।
- ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ, ਕਿਸੇ ਘਟਨਾ ਨੂੰ ਨਿਰੀਖਤ ਕਰਨ ਜਾਂ ਨਾਪਣ ਦਾ ਅਰਥ ਹੈ ਇਸਦੀ ਪੁਜੀਸ਼ਨ ਅਤੇ ਟਾਈਮ ਨੂੰ ਮੇਲ ਕੀਤੇ ਹੋਏ ਕਲੌਕਾਂ ਦੇ ਕਿਸੇ ਪਰਿਕਲਪਿਤ ਅਨੰਤ ਜਾਲ-ਢਾਂਚੇ ਦੇ ਵਿਰੁੱਧ ਸੁਨਿਸ਼ਚਿਤ ਕਰਨਾ। ਕਿਸੇ ਘਟਨਾ ਨੂੰ ਨਿਰੀਖਤ ਕਰਨਾ ਕਿਸੇ ਘਟਨਾ ਨੂੰ ਦੇਖਣ ਵਾਂਗ ਨਹੀਂ ਹੁੰਦਾ।
^ਇਤਿਹਾਸ (ਮੁੱਖ ਸਫ਼ੇ ਦੇ ਪਰਤਣ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ)
- ਮੱਧ-1800ਵੇਂ ਦਹਾਕੇ ਦੇ ਵਿਗਿਆਨੀਆਂ ਲਈ, ਪ੍ਰਕਾਸ਼ ਦੇ ਤਰੰਗੀ ਸੁਭਾਓ ਦਾ ਭਾਵ ਸੀ ਕਿ ਇੱਕ ਅਜਿਹਾ ਮਾਧਿਅਮ ਜਿਸ ਵਿੱਚ ਤਰੰਗਾ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਲਿਊਮਨੀਫੇਰੁਸ ਏਇਥਰ ਨਾਮਕ ਪਰਿਕਲਪਿਤ ਮਾਧਿਅਮ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਪਤਾ ਲਗਾਉਣ ਲਈ ਬਹੁਤ ਸਾਰੀ ਰਿਸਰਚ ਹੋਈ ਸੀ। ਪ੍ਰਯੋਗਾਂ ਨੇ ਆਪਾਵਿਰੋਧੀ ਨਤੀਜੇ ਮੁਹੱਈਆ ਕਰਵਾਏ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਸਟੈੱਲਰ ਅਬੈਰੇਸ਼ਨ ਤੋਂ ਭਾਵ ਸੀ। ਪਦਾਰਥ ਅਤੇ ਏਇਥਰ ਦਰਮਿਆਨ ਕੋਈ ਕਪਲਿੰਗ ਨਹੀਂ ਹੁੰਦੀ, ਜਦੋਂਕਿ ਮਾਈਕਲਸਨ-ਮੋਰਲੇ ਪ੍ਰਯੋਗ ਨੇ ਪਦਾਰਥ ਅਤੇ ਏਇਥਰ ਦਰਮਿਆਨ ਸੰਪੂਰਨ ਕਪਲਿੰਗ ਦੀ ਮੰਗ ਕੀਤੀ ਸੀ।
- ਫਿਟਜ਼ਗੇਰਾਲਡ ਅਤੇ ਲੌਰੰਟਜ਼ ਨੇ ਸੁਤੰਤਰ ਤੌਰ ਤੇ ਲੰਬਾਈ ਸੁੰਗੜਨ ਵਾਲੀ ਪਰਿਕਲਪਨਾ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤੀ ਸੀ, ਜੋ ਇੱਕ ਆਸ਼ਾਹੀਣ ਗੈਰ-ਜਰੂਰੀ ਪ੍ਰਸਤਾਵ ਸੀ ਕਿ ਪਦਾਰਥਕ ਕਣ, ਜਦੋਂ ਏਇਥਰ ਰਾਹੀਂ ਯਾਤਰਾ ਕਰ ਰਹੇ ਹੁੰਦੇ ਹਨ, ਉਹਨਾਂ ਦੀ ਯਾਤਰਾ ਵਾਲ਼ੀ ਦਿਸ਼ਾ ਵਿੱਚ ਉਹ ਭੌਤਿਕੀ ਤੌਰ ਤੇ ਦਬਾਓ ਅਨੁਭਵ ਕਰਦੇ ਹਨ।
- ਹੈਨਰੀ ਪੋਆਇਨਕੇਅਰ ਨੇ ਆਈਨਸਟਾਈਨ ਦੇ ਪੂਰਵਜਾਂ ਦੇ ਕਿਸੇ ਹੋਰ ਨਾਲ਼ੋਂ ਇਸ ਗੱਲ ਤੇ ਪਹੁੰਚਣ ਵਿੱਚ ਜਿਆਦਾ ਨਜ਼ਦੀਕ ਆਉਣਾ ਸੀ, ਜਿਸ ਨੂੰ ਵਰਤਮਾਨ ਵਿੱਚ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਸਪੈਸ਼ਲ ਥਿਊਰੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।
- "ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਥਿਊਰੀ ... 1905 ਵਿੱਚ ਖੋਜਣ ਲਈ ਪੱਕ (ਯੋਗ ਹੋ) ਚੁੱਕੀ ਸੀ।"
- ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਆਈਨਸਟਾਈਨ ਦੀ ਥਿਊਰੀ (1905), ਜੋ ਕਾਇਨਾਮੈਟਿਕਸ ਉੱਤੇ ਅਧਾਰਿਤ ਸੀ ਅਤੇ ਨਾਪ ਦੇ ਅਰਥ ਦੀ ਇੱਕ ਸਾਵਧਾਨੀਪੂਰਵਕ ਜਾਂਚ ਉੱਤੇ ਅਧਾਰਿਤ ਸੀ, ਪ੍ਰਕਾਸ ਦੇ ਨਾਪਾਂ ਨਾਲ ਸਬੰਧਤ ਪ੍ਰਯੋਗਿਕ ਸਮੱਸਿਆਵਾਂ ਸਮਝਾਉਣ ਵਾਲੀ ਪਹਿਲੀ ਥਿਊਰੀ ਸੀ। ਇਸਨੇ ਨਾ ਕੇਵਲ ਇਲੈਕਟ੍ਰੋਡਾਇਨਾਮਿਕਸ ਦੀ ਇੱਕ ਥਿਊਰੀ ਪ੍ਰਸਤੁਤ ਕੀਤੀ, ਸਗੋਂ ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਦੀ ਫਿਤਰਤ ਦੀ ਇੱਕ ਬੁਨਿਆਦੀ ਪੁਨਰ-ਧਾਰਨਾ ਵੀ ਪੇਸ਼ ਕੀਤੀ।
- ਆਈਨਸਟਾਈਨ ਦੁਆਰਾ ਖੋਖਲਾ ਕਰ ਦਿੱਤੇ ਜਾਣ ਤੇ, ਹਰਮਨ ਮਿੰਕੋਵਸਕੀ ਨੇ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਅਪਣੀ ਖੁਦ ਦੀ ਮੌਲਿਕ ਵਿਆਖਿਆ ਵਿਕਸਿਤ ਕਰਨ ਉੱਤੇ ਕਈ ਸਾਲ ਬਿਤਾਏ। 1907 ਅਤੇ 1908 ਦਰਮਿਆਨ, ਉਸਨੇ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਅਪਣੀ ਮੌਲਿਕ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਵਿਆਖਿਆ ਪੇਸ਼ ਕੀਤੀ, ਜਿਸਨੇ ਮਿੰਕੋਵਸਕੀ ਸਪੇਸ ਜਾਂ ਸਪੇਸਟਾਈਮ ਦੇ ਤੌਰ ਤੇ ਜਾਣੇ ਜਾਣ ਦੇ ਰੂਪ ਵਿੱਚ ਸਾਹਮਣੇ ਆਉਣਾ ਸੀ।
ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ ਸਪੇਸਟਾਈਮ ਸਾਰਾਂਸ਼
[ਸੋਧੋ]^ਸਪੇਸਟਾਈਮ ਅਰਸਾ (ਮੁੱਖ ਸਫ਼ੇ ਦੇ ਪਰਤਣ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ)
- ਸਮਾਂ ਅਪਣੇ ਆਪ ਵਿੱਚ ਅਤੇ ਲੰਬਾਈ ਅਪਣੇ ਆਪ ਵਿੱਚ ਇਨਵੇਰੀਅੰਟ ਨਹੀਂ ਹੁੰਦੇ, ਕਿਉਂਕਿ ਸਾਪੇਖਿਕ ਗਤੀ ਅੰਦਰਲੇ ਔਬਜ਼ਰਵਰ ਘਟਨਾਵਾਂ ਦਰਮਿਆਨ ਦੂਰੀ ਜਾਂ ਘਟਨਾਵਾਂ ਦਰਮਿਆਨ ਸਮੇਂ ਉੱਤੇ ਅਸਹਿਮਤ ਰਹਿਣਗੇ।
- ਦੂਜੇ ਪਾਸੇ, ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਗਤੀ ਅੰਦਰਲੇ ਔਬਜ਼ਰਵਰ ਸਪੇਸਟਾਈਮ ਅਰਸਾ ਕਹੇ ਜਾਣ ਵਾਲੇ ਡਿਸਟੈਂਸ ਅਤੇ ਟਾਈਮ ਦੇ ਇੱਕ ਵਿਸੇਸ਼ ਮੇਲ ਦੇ ਨਾਪ ਉੱਤੇ ਸਹਿਮਤ ਰਹਿਣਗੇ।
- ਸਪੇਸਟਾਈਮ ਅਰਸੇ ਪੌਜ਼ਟਿਵ, ਨੈਗਟਿਵ ਜਾਂ ਸਿਫਰ (ਜ਼ੀਰੋ) ਹੋ ਸਕਦੇ ਹਨ। ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਨਾਲ ਗਤੀਸ਼ੀਲ ਕਣ ਸਿਫਰ (0) ਸਪੇਸਟਾਈਮ ਅਰਸਾ ਰੱਖਦੇ ਹਨ ਅਤੇ ਬੁੱਢੇ ਨਹੀਂ ਹੁੰਦੇ।
- ਸਪੇਸਟਾਈਮ ਚਿੱਤਰਾਂ ਨੂੰ ਵਿਸ਼ੇਸ਼ ਤੌਰ ਤੇ ਸਿਰਫ ਕਿਸੇ ਸਿੰਗਲ ਸਪੇਸ ਅਤੇ ਕਿਸੇ ਸਿੰਗਲ ਸਮਾਂ ਨਿਰਦੇਸ਼ਾਂਕ ਨਾਲ ਵਾਹਿਆ ਜਾਂਦਾ ਹੈ। ਸਮਾਂ-ਧੁਰਾ ਨਾਲ ਪੈਮਾਨਾਬੱਧ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਜੋ ਸਪੇਸ ਅਤੇ ਸਮਾਂ ਨਿਰਦੇਸ਼ਾਂਕਾਂ (ਕੋਆਰਡੀਨੇਟਾਂ) ਦੀਆਂ ਯੂਨਿਟਾਂ (ਮੀਟਰਾਂ ਵਿੱਚ) ਇੱਕੋ ਜਿਹੀਆਂ ਰਹਿਣ।
^ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ (ਮੁੱਖ ਸਫ਼ੇ ਦੇ ਪਰਤਣ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ)
- ਸਾਪੇਖਿਕ ਗਤੀ ਅੰਦਰ ਦੋ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ ਦੇ ਵਿਸ਼ਲੇਸ਼ਣਾਂ ਨੂੰ ਸਰਲ ਕਰਨ ਲਈ, ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ ਦੇ ਗੈਲੀਲੀਅਨ (ਯਾਨਿ ਕਿ, ਪ੍ਰੰਪਰਿਕ 3-ਸਪੇਸ) ਚਿੱਤਰਾਂ ਨੂੰ ਅਜਿਹੇ ਰੇਖਾਬੱਧ ਕਿਤੇ ਗਏ ਧੁਰਿਆਂ ਵਾਲ਼ੀ ਕਿਸੇ ਮਿਆਰੀ ਬਣਤਰ ਵਿੱਚ ਸੈੱਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜਿਹਨਾਂ ਦੇ ਮੂਲ ਬਿੰਦੂ t = 0 ਸਮੇਂ ਇੱਕੋ ਸਥਾਨ ਉੱਤੇ ਮਿਲਦੇ ਹਨ।
- ਮਿਆਰੀ ਬਣਤਰ ਅੰਦਰ ਕੋਈ ਸਪੇਸਟਾਈਮ ਚਿੱਤਰ ਵਿਸ਼ੇਸ਼ ਤੌਰ ਤੇ ਸਿਰਫ ਇੱਕੋ ਸਿੰਗਲ ਸਪੇਸ ਅਤੇ ਇੱਕੋ ਸਮਾਂ ਨਿਰਦੇਸ਼ਾਂਕਾਂ (ਕੋਆਰਡੀਨੇਟਾਂ) ਨਾਲ ਵਾਹਿਆ ਜਾਂਦਾ ਹੈ। ਗੈਰ-ਪ੍ਰਾਈਮ ਕੀਤੀ ਗਈ ਫ੍ਰੇਮ ਔਰਥੋਗਨਲ x ਅਤੇ ct ਧੁਰੇ ਰੱਖਦੀ ਹੈ। ਪ੍ਰਾਈਮ ਕੀਤੀ ਹੋਈ ਫ੍ਰੇਮ ਗੈਰ-ਪ੍ਰਾਈਮ ਕੀਤੇ ਹੋਏ ਧੁਰਿਆਂ ਨਾਲ ਇੱਕ ਸਾਂਝਾ ਮੂਲ-ਬਿੰਦੂ ਸ਼ੇਅਰ ਕਰਦੀ ਹੈ, ਪਰ ਇਸਦੇ x' ਅਤੇ ct' ਧੁਰੇ, x ਅਤੇ ct ਧੁਰਿਆਂ ਤੋਂ ਬਰਾਬਰ ਅਤੇ ਉਲਟ ਕੋਣਾਂ ਰਾਹੀਂ ਟੇਢੇ ਹੋ ਜਾਣਗੇ।
- ਭਾਵੇਂ ਗੈਰ-ਪ੍ਰਾਈਮ ਕੀਤੀ ਗਈ ਫ੍ਰੇਮ ਦੇ ਧੁਰੇ ਔਰਥੋਗਨਲ ਹੁੰਦੇ ਹਨ ਅਤੇ ਪ੍ਰਾਈਮ ਕੀਤੀ ਗਈ ਫ੍ਰੇਮ ਦੇ ਧੁਰੇ ਟੇਢੇ ਹੋ ਜਾਂਦੇ ਹਨ, ਤਾਂ ਵੀ ਫ੍ਰੇਮਾਂ ਵਾਸਤਵਿਕ ਵਿੱਚ, ਬਰਾਬਰ ਹੁੰਦੀਆਂ ਹਨ। ਅਸਮਰੂਪਤਾ ਦਾ ਕਾਰਣ ਨਾ ਰੋਕੀ ਜਾ ਸਕਣ ਵਾਲੀ ਮੈਪਿੰਗ ਡਿਸਟੋਰਸ਼ਨ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਇਸ ਨੂੰ ਓਸ ਡਿਸਟੋਰਸ਼ਨ ਦੀ ਮੈਪਿੰਗ ਤੋਂ ਜਿਆਦਾ ਅਜੀਬ ਨਹੀਂ ਸਮਝੀ ਜਾਣੀ ਚਾਹੀਦੀ, ਜੋ, ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਉਦੋਂ ਹੁੰਦੀ ਹੈ ਜਦੋਂ ਕਿਸੇ ਪੱਧਰੇ ਨਕਸ਼ੇ ਉੱਪਰ ਕਿਸੇ ਗੋਲ ਧਰਤੀ ਦੀ ਮੈਪਿੰਗ ਕਰਨੀ ਹੋਵੇ।
^ਲਾਈਟ ਕੋਨ (ਮੁੱਖ ਸਫ਼ੇ ਦੇ ਪਰਤਣ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ)
- ਕਿਸੇ ਸਪੇਸਟਾਈਮ ਚਿੱਤਰ ਉੱਤੇ, ਦੋ 45° ਤਿਰਛੀਆਂ ਰੇਖਾਵਾਂ ਜੋ ਮੂਲ ਬਿੰਦੂ ਨੂੰ ਪਾਰ ਕਰ ਰਹੀਆਂ ਹੋਣ, ਮੂਲ ਬਿੰਦੂ ਵੱਲ ਅਤੇ ਮੂਲ ਬਿੰਦੂ ਤੋਂ ਪ੍ਰਕਾਸ਼ ਦੇ ਸੰਕੇਤਾਂ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਦੀਆਂ ਹਨ। ਕਿਸੇ ਫਾਲਤੂ ਸਪੇਸ ਦਿਸ਼ਾ ਵਾਲੇ ਕਿਸੇ ਚਿੱਤਰ ਅੰਦਰ, ਤਿਰਛੀਆਂ ਰੇਖਾਵਾਂ ਇੱਕ ਲਾਈਟ ਕੋਨ ਰਚਦੀਆਂ ਹਨ।
- ਲਾਈਟ ਕੋਨ ਸਪੇਸਟਾਈਮ ਨੂੰ ਇੱਕ ਟਾਈਮਲਾਈਕ ਭਵਿੱਖ (ਸਪੇਸ ਤੋਂ ਜਿਆਦਾ ਸਮੇਂ ਰਾਹੀਂ ਮੂਲ ਬਿੰਦੂ ਤੋਂ ਦੂਰ ਕੀਤੇ ਹੋਏ), ਇੱਕ ਟਾਈਮਲਾਈਕ ਭੂਤਕਾਲ, ਅਤੇ ਇੱਕ “ਬਾਕੀ ਕਿਤੇ ਵੀ ਵਾਲੇ” ਖੇਤਰ (ਮੂਲ ਬਿੰਦੂ ਤੋਂ ਇੱਕ ਸਪੇਸਲਾਈਕ ਅਰਸੇ ਦੁਆਰਾ ਸਮੇਂ ਨਾਲ਼ੋਂ ਜਿਆਦਾ ਸਪੇਸ ਰਾਹੀਂ ਅਲੱਗ ਕੀਤੇ ਹੋਏ) ਵਿੱਚ ਵਿਭਾਜਿਤ ਕਰਦੀ ਹੈ।
- ਭਵਿੱਖ ਅਤੇ ਭੂਤਕਾਲ ਲਾਈਟ ਕੋਨਾਂ ਅੰਦਰਲੀਆਂ ਘਟਨਾਵਾਂ ਮੂਲ ਬਿੰਦੂ ਨਾਲ ਕਾਰਣਾਤਮਿਕ ਤੌਰ ਤੇ ਸਬੰਧਤ ਹੁੰਦੀਆਂ ਹਨ। ਬਾਕੀ ਕੀਤੇ ਵੀ ਵਅਲੇ ਖੇਤਰ ਅੰਦਰਲੀਆਂ ਘਟਨਾਵਾਂ, ਮੂਲ ਬਿੰਦੂ ਨਾਲ ਕੋਈ ਕਾਰਣਾਤਮਿਕ ਰਿਸ਼ਤਾ ਨਹੀਂ ਰੱਖਦੀਆਂ।
^ ਤਤਕਾਲੀਨਤਾ ਦੀ ਸਾਪੇਖਿਤਾ (ਮੁੱਖ ਸਫ਼ੇ ਦੇ ਪਰਤਣ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ)
- ਜੇਕਰ ਦੋ ਘਟਨਾਵਾਂ ਟਾਈਮਲਾਈਕ ਵੱਖਰੀਆਂ ਹੋਣ (ਕਾਰਣਾਤਮਿਕ ਤੌਰ ਤੇ ਸਬੰਧਤ), ਤਾਂ ਸਾਰੇ ਔਬਜ਼ਰਵਰਾਂ ਲਈ ਉਹਨਾਂ ਦਾ ਪਹਿਲਾਂ-ਬਾਦ ਵਾਲਾ ਕ੍ਰਮ ਸਥਿਰ (ਫਿਕਸ) ਕੀਤਾ ਹੁੰਦਾ ਹੈ।
- ਜੇਕਰ ਦੋ ਘਟਨਾਵਾਂ ਸਪੇਸ-ਲਾਈਕ ਵੱਖਰੀਆਂ ਹੋਣ (ਗੈਰ-ਕਾਰਣਾਤਮਿਕ ਤੌਰ ਤੇ ਸਬੰਧਤ), ਤਾਂ ਵੱਖਰੀਆਂ ਸਾਪੇਖਿਕ ਗਤੀਆਂ ਵਾਲੇ ਵੱਖਰੇ ਔਬਜ਼ਰਵਰ ਇਸ ਗੱਲ ਉੱਤੇ ਉਲਟ ਫੈਸਲੇ ਰੱਖਣਗੇ ਕਿ ਕਿਹੜੀ ਘਟਨਾ ਪਹਿਲਾਂ ਵਾਪਰੀ ਤੇ ਕਿਹੜੀ ਬਾਦ ਵਿੱਚ ਵਾਪਰਦੀ ਹੈ।
- ਤਤਕਾਲੀਨ ਘਟਨਾਵਾਂ ਲਾਜ਼ਮੀ ਤੌਰ ਤੇ ਸਪੇਸਲਾਈਕ ਵੱਖਰੀਆਂ ਹੁੰਦੀਆਂ ਹਨ।
- ਦੋ ਤਤਕਾਲੀਨ ਘਟਨਾਵਾਂ ਦਰਮਿਆਨ ਸਪੇਸਟਾਈਮ ਅਰਸਾ ਪ੍ਰੌਪਰ ਡਿਸਟੈਂਸ ਦਿੰਦਾ ਹੈ। ਕਿਸੇ ਸੰਸਾਰ ਰੇਖਾ ਦੇ ਨਾਲ ਨਾਲ ਨਾਪਿਆ ਗਿਆ ਸਪੇਸਟਾਈਮ ਅਰਸਾ ਪ੍ਰੌਪਰ ਟਾਈਮ ਦਿੰਦਾ ਹੈ।
^ ਇਨਵੇਰੀਅੰਟ ਹਾਇਪ੍ਰਬੋਲਾ (ਮੁੱਖ ਸਫ਼ੇ ਦੇ ਪਰਤਣ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ)
- ਕਿਸੇ ਸਤਹਿ ਅੰਦਰ, ਮੂਲ ਬਿੰਦੂ ਤੋਂ ਇੱਕਸਮਾਨ ਦੂਰੀ ਉੱਤੇ ਸਥਿਤ ਬਿੰਦੂਆਂ ਦਾ ਸੈੱਟ (ਸਮੂਹ) ਇੱਕ ਚੱਕਰ ਰਚਦਾ ਹੈ।
- ਕਿਸੇ ਸਪੇਸਟਾਈਮ ਚਿੱਤਰ ਅੰਦਰ, ਮੂਲ ਬਿੰਦੂ ਤੋਂ ਕਿਸੇ ਫਿਕਸ ਕੀਤੇ ਹੋਏ ਸਪੇਸਟਾਈਮ ਅਰਸੇ ਉੱਤੇ ਬਿੰਦੂਆਂ ਦਾ ਇੱਕ ਸੈੱਟ, ਇੱਕ ਇਨਵੇਰੀਅੰਟ ਹਾਇਪ੍ਰਬੋਲਾ ਰਚਦਾ ਹੈ।
- ਮੂਲ ਬਿੰਦੂ ਤੋਂ ਸਥਿਰ ਸਪੇਸਲਾਈਕ ਅਤੇ ਸਥਿਰ ਟਾਈਮਲਾਈਕ ਅਰਸਿਆਂ ਉੱਤੇ ਬਿੰਦੂਆਂ ਦਾ ਲੋਕੀਆਇ, ਟਾਈਮਲਾਈਕ ਅਤੇ ਸਪੇਸਲਾਈਕ ਇਨਵੇਰੀਅੰਟ ਹਾਇਪ੍ਰਬੋਲੇ ਰਚਦਾ ਹੈ।
^ ਸਮਾਂ ਦੇਰੀ ਅਤੇ ਲੰਬਾਈ ਸੁੰਗੜਨਾ (ਮੁੱਖ ਸਫ਼ੇ ਦੇ ਪਰਤਣ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ)
- ਜੇਕਰ ਫ੍ਰੇਮ S', ਫ੍ਰੇਮ S ਪ੍ਰਤਿ ਸਾਪੇਖਿਕ ਗਤੀ ਵਿੱਚ ਹੋਵੇ, ਤਾਂ ਇਸਦਾ ct' ਧੁਰਾ ct ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਟੇਢਾ ਹੋ ਜਾਂਦਾ ਹੈ।
- ਇਸ ਟੇਢੇਪਣ ਦੇ ਕਾਰਨ, ct' ਧੁਰੇ ਉੱਤੇ ਇੱਕ ਪ੍ਰਕਾਸ਼-ਸਕਿੰਟ ct ਧੁਰੇ ਉੱਤੇ ਵਾਲ਼ੇ ਪ੍ਰਕਾਸ਼ ਸਕਿੰਟ ਨਾਲ਼ੋਂ ਵੱਡਾ ਮੈਪ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸੇਤਰਾਂ , ct ਧੁਰੇ ਉੱਤੇ ਇੱਕ ਪ੍ਰਕਾਸ਼-ਸਕਿੰਟ ct' ਧੁਰੇ ਉੱਤੇ ਵਾਲ਼ੇ ਪ੍ਰਕਾਸ਼ ਸਕਿੰਟ ਨਾਲ਼ੋਂ ਵੱਡਾ ਮੈਪ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਹਰੇਕ ਔਬਜ਼ਰਵਰ ਦੂਜੇ ਦੇ ਕਲੌਕ ਨੂੰ ਧੀਮਾ ਚਲਦਾ ਨਾਪਦਾ ਹੈ।
- x' ਧੁਰੇ ਪ੍ਰਤਿ ਸਮਾਂਤਰ ਰੇਖਾਬੱਧ ਲੰਬਾਈ ਵਿੱਚ ਇੱਕ ਲਾਈਟ-ਸਕਿੰਟ ਦੀ ਕੋਈ ਰੌਡ ਦੀ ਸੰਸਾਰ-ਸ਼ੀਟ x ਧੁਰੇ ਉੱਤੇ ਇੱਕ ਲਾਈਟ-ਸਕਿੰਟ ਨਾਲ਼ੋਂ ਘੱਟ ਪ੍ਰੋਜੈਕਟ ਹੁੰਦਾ ਹੈ। ਇਸੇਤਰਾਂ, x ਧੁਰੇ ਪ੍ਰਤਿ ਸਮਾਂਤਰ ਰੇਖਾਬੱਧ ਲੰਬਾਈ ਵਿੱਚ ਇੱਕ ਲਾਈਟ-ਸਕਿੰਟ ਦੀ ਕੋਈ ਰੌਡ ਦੀ ਸੰਸਾਰ-ਸ਼ੀਟ x' ਧੁਰੇ ਉੱਤੇ ਇੱਕ ਲਾਈਟ-ਸਕਿੰਟ ਨਾਲ਼ੋਂ ਘੱਟ ਪ੍ਰੋਜੈਕਟ ਹੁੰਦਾ ਹੈ। ਹਰੇਕ ਔਬਜ਼ਰਵਰ ਦੂਜੇ ਦੇ ਪੈਮਾਨਿਆਂ ਨੂੰ ਅੱਗੇ ਤੋਂ ਛੋਟੇ ਹੋਏ ਵੇ ਨਾਪਦਾ ਹੈ।
^ ਪਰਸਪਰ ਸਮਾਂ ਦੇਰੀ ਅਤੇ ਟਵਿਨ ਪਹੇਲੀ ਸਾਰਾਂਸ਼ (ਮੁੱਖ ਸਫ਼ੇ ਦੇ ਪਰਤਣ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ)
^ ਪਰਸਪਰ ਸਮਾਂ ਦੇਰੀ (ਮੁੱਖ ਸਫ਼ੇ ਦੇ ਪਰਤਣ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ)
- ਸ਼ੁਰੂਆਤੀ ਸਿਖਿਆਰਥੀਆਂ ਲਈ, ਪਰਸਪਰ ਸਮਾਂ ਦੇਰੀ ਸਵੈ-ਵਿਰੋਧੀ ਦਿਸਦੀ ਹੈ ਕਿਉਂਕਿ ਦੋ ਔਬਜ਼ਰਵਰ ਜੋ ਸਾਪੇਖਿਕ ਗਤੀਸ਼ੀਲ ਹੁੰਦੇ ਹਨ ਇੱਕ-ਦੂਜੇ ਦੇ ਕਲੌਕ ਨੂੰ ਹੋਰ ਜਿਆਦਾ ਧੀਮਾ ਚਲਦਾ ਨਾਪਣਗੇ।
- ਸਮਾਂ ਕਿਵੇਂ ਨਾਪਿਆ ਜਾਂਦਾ ਹੈ, ਇਸ ਉੱਤੇ ਸਾਵਧਾਨੀ ਨਾਲ ਕੀਤੀਆਂ ਵਿਚਾਰਾਂ ਭੇਤ ਖੋਲਦੀਆਂ ਹਨ ਕਿ ਦੋ ਔਬਜ਼ਰਵਰਾਂ ਦੇ ਨਾਪਾਂ ਦਾ ਉਲਟ ਤੌਰ ਤੇ ਅਨੁਕੂਲ ਹੋਣਾ ਜਨਮਜਾਤ ਤੌਰ ਤੇ ਲਾਜ਼ਮੀ ਹੋਣਾ ਜਰੂਰੀ ਨਹੀਂ ਹੈ।
- B ਦੇ ਕਲੌਕਾਂ ਵਿੱਚੋਂ ਇੱਕ ਕਲੌਕ ਦੀ ਟਿੱਕ ਟਿੱਕ ਦੀ ਦਰ ਨਾਪਣ ਲਈ, ਔਬਜ਼ਰਵਰ A ਨੂੰ ਜਰੂਰ ਹੀ ਅਪਣੇ ਦੋ ਕਲੌਕ ਵਰਤਣੇ ਚਾਹੀਦੇ ਹਨ ਤਾਂ ਜੋ ਉਹ ਉਹ ਸਮਾਂ ਦਰਜ ਕਰ ਸਕੇ ਜਿੱਥੇ B ਦੇ ਕਲੌਕ ਨੇ ਪਹਿਲਾ ਟਿੱਕ ਕੀਤਾ ਸੀ, ਅਤੇ ਜਿੱਥੇ B ਦੇ ਕਲੌਕ ਨੇ ਦੂਜਾ ਟਿੱਕ ਕੀਤਾ ਸੀ, ਤਾਂ ਜੋ ਕੁੱਲ ਤਿੰਨ ਕਲੌਕ ਨਾਪ ਵਿੱਚ ਸ਼ਾਮਿਲ ਹੋਣ। ਇਸਦੇ ਉਲਟ, ਔਬਜ਼ਰਵਰ B, ਔਬਜ਼ਰਵਰ A ਦੇ ਕਲੌਕਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਇੱਕ ਦੀ ਟਿੱਕ ਟਿੱਕ ਦੀ ਦਰ ਨਾਪਣ ਲਈ ਤਿੰਨ ਕਲੌਕ ਵਰਤਦਾ ਹੈ। A ਅਤੇ B ਇੱਕੋ ਜਿਹੇ ਕਲੌਕਾਂ ਨਾਲ ਇੱਕੋ ਜਿਹੇ ਨਾਪ ਨਹੀਂ ਲੈ ਰਹੇ ਹੁੰਦੇ।
^ਟਵਿਨ ਪਹੇਲੀ (ਮੁੱਖ ਸਫ਼ੇ ਦੇ ਪਰਤਣ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ)
- ਟਵਿਨ ਪਹੇਲੀ ਅੰਦਰ, ਇੱਕ ਟਵਿਨ A ਕਿਸੇ ਉੱਚ-ਸਪੀਡ ਰਾਕਟ ਵਿੱਚ ਬੈਠ ਕੇ ਸਪੇਸ ਅੰਦਰ ਕੋਈ ਯਾਤਰਾ ਕਰਦਾ ਹੈ, ਤੇ ਗਰੁੱਪ ਪਰਤਣ ਤੇ ਪਾਉਂਦਾ ਹੈ ਕਿ ਟਵਿਨ B ਜੋ ਧਰਤੀ ਤੇ ਰਿਹਾ ਸੀ, ਉਸ ਨਾਲੋਂ ਜਿਆਦਾ ਬੁੱਢਾ ਹੋ ਗਿਆ ਹੈ।
- ਟਵਿਨ ਪਹੇਲੀ ਕੋਈ ਪਹੇਲੀ ਨਹੀਂ ਹੈ ਕਿਉਂਕਿ ਟਵਿਨਾਂ ਦੇ ਰਸਤੇ ਸਪੇਸਟਾਈਮ ਰਾਹੀਂ ਇੱਕ ਬਰਾਬਰ ਨਹੀਂ ਹੁੰਦੇ।
- ਯਾਤਰਾ ਕਰਨ ਵਾਲੇ ਟਵਿਨਾਂ ਦੀ ਯਾਤਰਾ ਦੀਆਂ ਆਊਟਬਾਊਂਡ ਅਤੇ ਇਨਬਾਊਂਡ ਲੱਤਾਂ, ਦੋਹਾਂ ਦੇ ਸਾਰੇ ਰਸਤੇ, A, ਔਬਜ਼ਰਵਰ B ਦੇ ਕਲੌਕਾਂ ਨੂੰ ਅਪਣੇ ਖੁਦ ਦੇ ਕਲੌਕਾਂ ਨਾਲ਼ੋਂ ਧੀਮਾ ਚਲਦਾ ਨਾਪਦਾ ਹੈ। ਪਰ ਮੁੜਨ ਦੌਰਾਨ, A ਦੀ ਸੰਸਾਰ ਰੇਖਾ ਦੀਆਂ ਘਟਨਾਵਾਂ ਵਿੱਚ ਇੱਕ ਸ਼ਿਫਟ ਵਾਪਰਦੀ ਹੈ ਜਿਸ ਨੂੰ B, ਅਪਣੀ ਖੁਦ ਦੀ ਸੰਸਾਰ ਰੇਖਾ ਨਾਲ ਤਤਕਾਲੀਨ ਹੁੰਦੀ ਮੰਨਦਾ ਹੈ।
^ਗ੍ਰੈਵੀਟੇਸ਼ਨ (ਮੁੱਖ ਸਫ਼ੇ ਦੇ ਪਰਤਣ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ)
- ਗਰੈਵਿਟੀ ਦੀ ਗੈਰ-ਹਾਜ਼ਰੀ ਵਿੱਚ, ਸਪੇਸਟਾਈਮ ਫਲੈਟ ਹੁੰਦਾ ਹੈ, ਸਭ ਜਗਹ ਇੱਕਸਾਰ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਅਪਣੇ ਅੰਦਰ ਹੋਣ ਵਾਲੀਆਂ ਘਟਨਾਵਾਂ ਵਾਸਤੇ ਕਿਸੇ ਸਥਿਰ ਬੈਕਗ੍ਰਾਊਂਡ ਤੋਂ ਜਿਆਦਾ ਹੋਰ ਕਿਸੇ ਕੰਮ ਨਹੀਂ ਆਉਂਦਾ।
- ਗਰੈਵਿਟੀ ਵਿਸ਼ਾਲ ਤੌਰ ਤੇ ਸਪੇਸਟਾਈਮ ਦੇ ਵੇਰਵੇ ਨੂੰ ਪੇਚੀਦਾ ਕਰਦੀ ਹੈ। ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ, ਸਪੇਸਟਾਈਮ ਕੋਈ ਸਥਿਰ ਬੈਕਗ੍ਰਾਊਂਡ ਨਹੀਂ ਹੁੰਦਾ, ਸਗੋਂ ਅਪਣੇ ਅੰਦਰ ਰੱਖੇ ਹੋਏ ਭੌਤਿਕੀ ਸਿਸਟਮਾਂ ਨਾਲ ਕ੍ਰਿਆਸ਼ੀਲ ਤੌਰ ਤੇ ਪਰਸਪਰ ਕ੍ਰਿਆ ਕਰਦਾ ਹੈ।
ਸਪੇਸਟਾਈਮ ਸਾਰਾਂਸ਼ ਦਾ ਬੁਨਿਆਦੀ ਗਣਿਤ
[ਸੋਧੋ]^ਗੈਲੀਲੀਅਨ ਰੂਪਾਂਤ੍ਰਨ (ਮੁੱਖ ਸਫ਼ੇ ਦੇ ਪਰਤਣ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ)
- ਇੱਕ ਮੁਢਲਾ ਟੀਚਾ ਸਾਪੇਖਿਕ ਗਤੀਸ਼ੀਲ ਔਬਜ਼ਰਵਰਾਂ ਦੁਆਰਾ ਲਏ ਗਏ ਨਾਪਾਂ ਦੀ ਤੁਲਨਾ ਕਰਨ ਦੇ ਯੋਗ ਹੋਣਾ ਹੈ।
- ਗੈਲੀਲੀਅਨ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮਾਂ ਦਰਮਿਆਨ ਰੂਪਾਂਤ੍ਰਨ ਰੇਖਿਕ ਹੁੰਦਾ ਹੈ। ਦੋ “ਕੋ-ਆਰਡੀਨੇਟ ਸਿਸਟਮ” ਮਿਆਰੀ ਬਣਤਰ ਵਿੱਚ ਦਿੱਤੇ ਹੋਣ ਤੇ, ਨਿਰਦੇਸ਼ਾਂਕਾਂ (ਕੋਆਰਡੀਨੇਟਾਂ) ਦੀਆਂ x-ਧੁਰੇ ਅੰਦਰ ਰੂਪਾਂਤ੍ਰਨਾਂ ਸਰਲ ਤੌਰ ਤੇ ਇਹ ਹੁੰਦੀਆਂ ਹਨ;
- ਵਿਲੌਸਿਟੀਆਂ ਸਰਲ ਤੌਰ ਤੇ ਜੋੜਾਤਮਿਕ ਹੁੰਦੀਆਂ ਹਨ। ਜੇਕਰ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ S’, ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ S ਪ੍ਰਤਿ ਸਾਪੇਖਿਕ ਵਿਲੌਸਿਟੀ v ਨਾਲ ਗਤੀਸ਼ੀਲ ਹੁੰਦੀ ਹੋਵੇ, ਅਤੇ ਫ੍ਰੇਮ S’ ਅੰਦਰ ਔਬਜ਼ਰਵਰ O’ ਵਿਲੌਸਿਟੀ u' ਨਾਲ ਕਿਸੇ ਵਸਤੂ ਨੂੰ ਗਤੀਸ਼ੀਲ ਹੁੰਦੀ ਨਾਪਦਾ ਹੈ, ਤਾਂ
- or
^ ਵਿਲੌਸਟੀਆਂ ਦੀ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਬਣਤਰ (ਮੁੱਖ ਸਫ਼ੇ ਦੇ ਪਰਤਣ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ)
- ਵਿਲੌਸਿਟੀਆਂ ਦੀ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਬਣਤਰ ਵਿਲੌਸਿਟੀਆਂ ਦੀ ਗੈਲੀਲੀਅਨ ਬਣਤਰ ਨਾਲ਼ੋਂ ਜਿਆਦਾ ਗੁੰਝਲਦਾਰ (ਕੰਪਲੈਕਸ) ਹੁੰਦੀ ਹੈ:
- ਘੱਟ ਸਪੀਡ ਸੀਮਾ ਅੰਦਰ, ਅੰਤਿਮ ਨਤੀਜਾ ਗੈਲੀਲੀਅਨ ਫਾਰਮੂਲੇ ਵਾਲੇ ਨਤੀਜੇ ਨਾਲੋਂ ਵੱਖਰੇ ਤੌਰ ਤੇ ਪਛਾਣਯੋਗ ਨਹੀਂ ਹੁੰਦਾ।
- ਦੋ ਵਿਲੌਸਟੀਆਂ ਦਾ ਜੋੜ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਨਾਲੋਂ ਜਿਆਦਾ ਨਹੀਂ ਹੋ ਸਕਦਾ।
^ ਸਮਾਂ ਦੇਰੀ ਅਤੇ ਲੰਬਾਈ ਸੁੰਗੜਨਾ ਪੁਨਰ-ਦੋਹਰਾਅ (ਮੁੱਖ ਸਫ਼ੇ ਦੇ ਪਰਤਣ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ)
- ਲੌਰੰਟਜ਼ ਫੈਕਟਰ, ਗਾਮਾ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ ਬਹੁਤ ਵਾਰ ਦਿਸਦਾ ਹੈ। ਦਿੱਤਾ ਹੋਣ ਤੇ,
- ਸਮਾਂ ਦੇਰੀ ਫੈਕਟਰ ਹੁੰਦਾ ਹੈ, ਜਦੋਂਕਿ