ਡਿੱਫਰੈਂਸ਼ੀਅਲ ਟੌਪੌਲੌਜੀ

ਵਿਕੀਪੀਡੀਆ, ਇੱਕ ਅਜ਼ਾਦ ਗਿਆਨਕੋਸ਼ ਤੋਂ
Jump to navigation Jump to search

ਡਿੱਫਰੈਂਸ਼ੀਅਲ ਟੌਪੌਲੌਜੀ ਉਹ ਖੇਤਰ ਹੈ ਜੋ ਡਿੱਫਰੈਂਸ਼ੀਏਬਲ ਮੈਨੀਫੋਲਡਾਂ ਉੱਤੇ ਡਿੱਫਰੈਂਸ਼ੀਏਬਲ ਫੰਕਸ਼ਨਾਂ ਨਾਲ ਵਰਤਦਾ ਹੈ। ਇਹ ਡਿੱਫਰੈਂਸ਼ੀਅਲ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਨਾਲ ਨਜ਼ਦੀਕੀ ਤੌਰ ਤੇ ਸਬੰਧਤ ਹੈ ਅਤੇ ਇਕੱਠੇ ਮਿਲ ਕੇ ਇਹ ਦੋਵੇਂ ਡਿੱਫਰੈਂਸ਼ੀਏਬਲ ਮੈਨੀਫੋਲਡਾਂ ਦੀ ਰੇਖਾਗਣਿਤਿਕ ਥਿਊਰੀ ਬਣਾਉਂਦੇ ਹਨ।

ਜੋਰ ਜਿਆਦਾ ਵਿਸ਼ੇਸ਼ ਤੌਰ ਤੇ ਕਹਿੰਦੇ ਹੋਏ, ਡਿੱਫਰੈਂਸ਼ੀਅਲ ਟੌਪੌਲੌਜੀ ਅਜਿਹੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਅਤੇ ਬਣਤਰਾਂ ਨੂੰ ਵਿਚਾਰਦੀ ਹੈ ਜਿਹਨਾਂ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਲਈ ਕਿਸੇ ਮੈਨੀਫੋਲਡ ਉੱਤੇ ਸਿਰਫ ਇੱਕ ਸੁਚਾਰੂ ਬਣਤਰ ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਵਾਧੂ ਰੇਖਾਗਣਿਤਿਕ ਬਣਤਰਾਂ ਵਾਲੇ ਮੈਨੀਫੋਲਡਾਂ ਨਾਲੋਂ ਸੁਚਾਰੂ ਮੈਨੀਫੋਲਡ ਜਿਆਦਾ ਕੋਮਲ ਹੁੰਦੇ ਹਨ। ਜੋ ਡਿੱਫਰੈਂਸ਼ੀਅਲ ਟੌਪੌਲੌਜੀ ਵਿੱਚ ਮੌਜੂਦ ਕੁੱਝ ਕਿਸਮਾਂ ਦੀਆਂ ਸਮਾਨਤਾਵਾਂ ਅਤੇ ਤੋੜਾਂ-ਮਰੋੜਾਂ ਪ੍ਰਤਿ ਰੁਕਾਵਟਾਂ ਦੇ ਤੌਰ ਤੇ ਕੰਮ ਕਰਦੇ ਹਨ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਵੌਲੀਊਮ (ਘਣਫਲ) ਅਤੇ ਰੀਮਾਨੀਅਨ ਕਰਵੇਚਰ ਅਜਿਹੇ ਸਥਿਰਾਂਕ ਹਨ ਜੋ ਇੱਕੋ ਸੁਚਾਰੂ ਮੈਨੀਫੋਲਡ ਉੱਤੇ ਵੱਖਰੀਆਂ ਵੱਖਰੀਆਂ ਰੇਖਾਗਣਿਤਿਕ ਬਣਤਰਾਂ ਨੂੰ ਵੱਖਰਾ ਕਰ ਸਕਦੇ ਹਨ- ਯਾਨਿ ਕਿ, ਕੁੱਝ ਮੈਨੀਫੋਲਡਾਂ ਨੂੰ ਸੁਚਾਰੂ ਤਰੀਕੇ ਨਾਲ ਪੱਧਰਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਪਰ ਇਸਤਰਾਂ ਕਰਨ ਲਈ ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਸਪੇਸ ਨੂੰ ਤੋੜਨਾ-ਮਰੋੜਨਾ ਪਵੇ ਅਤੇ ਕਰਵੇਚਰ ਅਤੇ ਵੌਲੀਊਮ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਨਾ ਪਵੇ ।