ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ

ਦਰਪਣ ਸਮਰੂਪਤਾ (ਸਟਰਿੰਗ ਥਿਊਰੀ)

ਵਿਕੀਪੀਡੀਆ, ਇੱਕ ਆਜ਼ਾਦ ਵਿਸ਼ਵਕੋਸ਼ ਤੋਂ
A complex mathematical surface in three dimensions.
ਗਣਨਾਸੂਚਕ ਰੇਖਾਗਣਿਤ ਦਾ ਕਲਾਸੀਕਲ ਨਤੀਜਾ ਬਿਆਨ ਕਰਦਾ ਹੈ ਕਿ ਇਸ ਸਤਹਿ ਉੱਤੇ ਸਾਰੇ ਪਾਸੇ ਇੰਨਬਿੰਨ 27 ਸਿੱਧੀਆਂ ਰੇਖਾਵਾਂ ਹਨ

ਦਰਪਣ ਸਮਰੂਪਤਾ ਦੀ ਖੋਜ ਰਾਹੀਂ ਸਟਰਿੰਗ ਥਿਊਰੀ ਨੇ ਗਣਿਤ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕੀਤਾ ਹੈ। ਸਟਰਿੰਗ ਥਿਊਰੀ ਵਿੱਚ, ਅਦ੍ਰਿਸ਼ ਸਥਾਨਿਕ ਅਯਾਮਾਂ ਦਾ ਅਕਾਰ ਆਮ ਤੌਰ 'ਤੇ ਕਾਲਾਬਿ-ਯਾਊ ਬਹੁ-ਪਰਤਾਂ ਨਾਮਕ ਗਣਿਤਿਕ ਚੀਜਾਂ ਵਿੱਚ ਸੰਕੇਤਿਕ ਸ਼ਬਦਾਂ ਵਿੱਚ ਬਦਲਿਆ ਜਾਂਦਾ ਹੈ (encoded)| ਇਹ ਸ਼ੁੱਧ ਗਣਿਤ ਵਿੱਚ ਦਿਲਚਸਪੀ ਵਾਲੀਆਂ ਹਨ, ਤੇ ਸਟਰਿੰਗ ਥਿਊਰੀ ਰਾਹੀਂ ਫਿਜਿਕਸ ਦੇ ਯਥਾਰਥਵਾਦੀ ਮਾਡਲਾਂ ਦੀ ਬਣਤਰ ਲਈ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। 1980ਵੇਂ ਦਹਾਕੇ ਦੇ ਅਖੀਰ ਵਿੱਚ, ਇਹ ਨੋਟ ਕੀਤਾ ਗਿਆ ਕਿ ਕਿਸੇ ਦਿੱਤੇ ਹੋਏ ਫਿਜਿਕਲ ਮਾਡਲ ਲਈ, ਸਬੰਧਿਤ ਨਿਰਾਲੀ ਕਾਲਾਬਿ-ਯਾਊ ਬਹੁ-ਪਰਤ ਬਣਾਉਣੀ ਸੰਭਵ ਹੈ। ਸਗੋਂ, ਇਹ ਵੀ ਖੋਜਿਆ ਗਿਆ ਕਿ ਦੋ ਕਾਲਾਬਿ-ਯਾਊ ਬਹੁ-ਪਰਤਾਂ ਇੱਜੋ ਫਿਜਿਕਸ ਬਣਾਉਂਦੀਆਂ ਹਨ। ਇਹਨਾਂ ਬਹੁ-ਪਰਤਾਂ ਨੂੰ ਇੱਕ ਦੂਜੀ ਦੀਆਂ ਦਰਪਣ ਕਿਹਾ ਗਿਆ| ਵਿਭਿੰਨ ਕਾਲਾਬਿ-ਯਾਊ ਬਹੁ-ਪਰਤਾਂ ਦਰਮਿਆਨ ਇਸ ਦਰਪਣ ਸਮਰੂਪਤਾ ਸਬੰਧ ਦੀ ਹੋਂਦ ਦੀਆਂ ਮਹੱਤਵਪੂਰਨ ਗਣਿਤਿਕ ਲੜੀਆਂ ਬਣਦੀਆਂ ਹਨ ਕਿਉਂਕਿ ਇਹ ਗਿਣਤੀ ਸੂਚਕ ਅਲਜਬਰਿਕ ਰੇਖਾਗਣਿਤ ਦੀਆਂ ਕਈ ਸਮੱਸਿਆਵਾਂ ਹੱਲ ਕਰਨ ਵਿੱਚ ਗਣਿਤਸ਼ਾਸਤਰੀਆਂ ਦੀ ਮਦੱਦ ਕਰਦਾ ਹੈ। ਅੱਜਕੱਲ ਗਣਿਤਸ਼ਾਸਤਰੀ ਅਜੇ ਵੀ ਭੌਤਿਕ ਵਿਗਿਆਨੀਆਂ ਦੇ ਸਹਿਜ ਗਿਆਨ ਤੇ ਆਧਾਰਿਤ ਦਰਪਣ ਸਮਰੂਪਤਾ ਦੀ ਗਣਿਤਿਕ ਸਮਝ ਵਿਕਸਿਤ ਕਰਨ ਵਿੱਚ ਲੱਗੇ ਹੋਏ ਹਨ।