ਦੋ ਘਾਤੀ ਫੰਕਸ਼ਨ

ਵਿਕੀਪੀਡੀਆ, ਇੱਕ ਅਜ਼ਾਦ ਗਿਆਨਕੋਸ਼ ਤੋਂ
Jump to navigation Jump to search
(ਪੈਰਾਬੋਲਾ)

ਦੋ ਘਾਤੀ ਬਹੁਪਦ ਗਣਿਤ ਵਿੱਚ ਇੱਕ ਬਹੁਪਦ ਹੈ ਜਿਸ ਨੂੰ ਹੇਠ ਲਿਖੇ ਢੰਗ ਨਾਲ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

[1] ਦੋ ਘਾਤੀ ਬਹੁਪਦ ਦਾ ਗਰਾਫ ਇੱਕ ਪੈਰਾਬੋਲਾ ਹੈ ਜਿਸ ਦੀ ਧੂਰੀ y-axis ਦੇ ਸਮਾਂਨਅੰਤਰ ਹੈ।
ਬਹੁਪਦ ਦੀ ਡਿਗਰੀ 2 ਹੈ ਕਿਉਂਕਿ x ਦੀ ਘਾਤ 2 ਹੈ। ਜੇ ਬਹੁਪਦ ਨੂੰ ਸਿਫਰ ਦੇ ਬਰਾਬਰ ਕਰ ਦਿਤਾ ਜਾਂਵੇ ਤਾਂ ਇਸ ਨੂੰ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸ ਦੇ ਹੱਲ ਨੂੰ ਇਸ ਦੇ ਮੂਲ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਉਦਾਹਰਨ[ਸੋਧੋ]

ਮੂਲ[ਸੋਧੋ]

ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ

ਦੇ ਮੂਲ ਉਹ ਹਨ ਜਿਸ ਤੇ ਸਮੀਕਰਨ ਦਾ f(x)=0 ਹੋ ਜਾਵੇ ਜਦੋਂ ਗੁਣਾਕ a, b ਅਤੇ c ਵਾਸਤਵਿਕ ਜਾਂ ਕੰਪਲੈਕਸ ਹੋਣ ਤਾਂ ਮੂਲ ਹੋਣਗੇ:

ਜਿਥੇ ਡਿਸਕ੍ਰਿਮੀਨੈਂਟ ਨੂੰ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ:

ਹਵਾਲੇ[ਸੋਧੋ]

  1. "Quadratic Equation -- from Wolfram MathWorld". Retrieved January 6, 2013.