ਵਿਕੀਪੀਡੀਆ, ਇੱਕ ਅਜ਼ਾਦ ਗਿਆਨਕੋਸ਼ ਤੋਂ
ਪੋਰਬੋਲਿਕ ਦੇ ਸ਼ੁਰੂਆਤੀ ਵੇਗ ਦੇ ਕੰਪੋਨੈਂਟਸ
ਪ੍ਰਜੈਕਟਾਈਲ ਮੋਸ਼ਨ ਇੱਕ ਅਜਿਹੀ ਗਤੀ ਦਾ ਰੂਪ ਹੈ ਜਿਸ ਵਿੱਚ ਇੱਕ ਵਸਤੂ ਜਾਂ ਕਣ ਨੂੰ ਧਰਤੀ ਦੀ ਸਤਹ ਦੇ ਨੇੜੇ ਸੁੱਟ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਹ ਵਸਤੂ ਗੁਰੂਤਾ ਖਿੱਚ ਦੇ ਕਾਰਨ ਇੱਕ ਕਰਵ ਰਾਸਤੇ ਵਿੱਚ ਚੱਲਣਾ ਸ਼ੁਰੂ ਕਰ ਦਿੰਦੀ ਹੈ। ਵਸਤੂ 'ਤੇ ਕੰਮ ਕਰਨ ਵਾਲੀ ਮਹੱਤਤਾ ਦੀ ਇਕੋ ਇੱਕ ਸ਼ਕਤੀ ਗ੍ਰੈਵਟੀ ਹੈ, ਜੋ ਹੇਠਲੇ ਪੱਧਰ ਤੇ ਕੰਮ ਕਰਦੀ ਹੈ ਤਾਂ ਕਿ ਹੇਠਲੇ ਪੱਧਰ ਤੇ ਪ੍ਰਵੇਗ ਹੋ ਸਕੇ। ਵਸਤੂ ਦੇ ਇਨਰਸੀਆ ਦੇ ਕਾਰਨ, ਵਸਤੂ ਦੀ ਖਿਤਿਜੀ ਤਰਤੀਬ ਨੂੰ ਬਣਾਏ ਰੱਖਣ ਲਈ ਕੋਈ ਬਾਹਰੀ ਹੌਰੀਜੌਟਲ ਫੋਰਸ ਦੀ ਲੋੜ ਨਹੀਂ ਪੈਂਦੀ।
ਸ਼ੁਰੂਆਤੀ ਵੇਗ[ਸੋਧੋ]
ਮੰਨ ਲਓ ਕਿਸੇ ਪ੍ਰਜੈਕਟਾਈਲ ਦਾ ਸ਼ੁਰੂਆਤੀ ਵੇਗ
, ਜਿਸ ਨੂੰ ਹੇਠ ਦਿੱਤੇ ਅਨੁਸਾਰ ਹੌਰੀਜੌਟਲ ਅਤੇ ਵਰਟੀਕਲ ਭਾਗਾਂ ਦੇ ਜੋੜ ਵਜੋਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ:
.
ਇਹ ਭਾਗ
ਅਤੇ
ਸ਼ੁਰੂਆਤੀ ਕੋਣ ਦੀ ਮਦਦ ਨਾਲ ਲਭਿਆ ਜਾ ਸਕਦੇ ਹਨ,
, ਜੋ ਕੀ ਕੁਝ ਇਸ ਤਰਾਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ:
,
.
ਪ੍ਰਜੈਕਟਾਈਲ ਮੋਸ਼ਨ ਦੀ ਕਾਇਨੇਮੈਟਿਕ ਮਾਤਰਾ[ਸੋਧੋ]
ਪ੍ਰਜੈਕਟਾਈਲ ਮੋਸ਼ਨ ਵਿਚ, ਹੌਰੀਜੌਟਲ ਮੋਸ਼ਨ ਅਤੇ ਲੰਬਕਾਰੀ ਮੋਸ਼ਨ ਇੱਕ ਦੂਜੇ ਤੋਂ ਸੁਤੰਤਰ ਹਨ; ਭਾਵ, ਕੋਈ ਵੀ ਮੋਸ਼ਨ ਇੱਕ ਦੂਜੇ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਨਹੀਂ ਕਰਦਾ ਹੈ।
ਇਹ 1638 ਵਿੱਚ ਗੈਲੀਲਿਓ ਦੁਆਰਾ ਸਥਾਪਿਤ ਮਿਸ਼ਰਤ ਮੋਸ਼ਨ ਦਾ ਸਿਧਾਂਤ ਹੈ।[1]
ਕਿਉਂਕਿ ਇਸ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਸਿਰਫ ਪ੍ਰਵੇਗ ਹੈ
ਲੰਬਕਾਰੀ ਦਿਸ਼ਾ ਵਿੱਚ, ਖਿਤਿਜੀ ਦਿਸ਼ਾ ਵਿੱਚ ਗਤੀ ਲਗਾਤਾਰ ਹੈ, ਜੋ ਕਿ
ਦੇ ਬਰਾਬਰ ਹੈ। ਕਿਸੇ ਪ੍ਰਜੈਕਟਾਈਲ ਦਾ ਲੰਬਕਾਰੀ ਮੋਸ਼ਨ ਇੱਕ ਫਰੀ ਫਾਲ ਦੇ ਦੌਰਾਨ ਹੋ ਰਿਹਾ ਕਿਸੇ ਕਣ ਦਾ ਮੋਸ਼ਨ ਹੈ। ਇਥੇ ਪ੍ਰਵੇਗ ਹਮੇਸ਼ਾ ਲਗਾਤਾਰ ਹੈ, ਜੋ ਕਿ
ਦੇ ਬਰਾਬਰ ਹੈ।[2] ਪ੍ਰਵੇਗ ਦੇ ਭਾਗ ਹਨ::
,
.
ਵਸਤੂ ਦੀ ਹੌਰੀਜੌਟਲ ਭਾਗ ਦਾ ਵੇਗ ਪੂਰੇ ਮੋਸ਼ਨ ਦੌਰਾਨ ਕੋਈ ਬਦਲਾਅ ਨਹੀਂ ਰੱਖਦਾ। ਵਰਟੀਕਲ ਭਾਗ ਦਾ ਵੇਗ ਇਕਸਾਰ ਵਧਦਾ ਹੈ, ਕਿਉਂਕੀ ਗ੍ਰੈਵਟੀ ਕਾਰਨ ਪ੍ਰਵੇਗ ਲਗਾਤਾਰ ਹੁੰਦਾ ਹੈ।
and
ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਪ੍ਰਵੇਗ ਨੂੰ ਇੰਟੀਗ੍ਰੇਟ ਕਰਕੇ ਦੋਨੋਂ ਭਾਗਾਂ ਦਾ ਵੇਗ ਕਿਸੇ ਵੀ ਸਮੇਂ,
, ਉੱਪਰ ਇਸ ਤਰਾਂ ਲੱਭਿਆ ਜਾ ਸਕਦਾ ਹੈ:
,
.
ਵੇਗ ਦਾ ਮੈਗਨੀਟੀਉਡ (ਤਿਕੋਣ ਕਾਨੂੰਨ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ):
.
ਵਿਸਥਾਪਨ[ਸੋਧੋ]
ਵਿਸਥਾਪਨ ਅਤੇ ਪੈਰਾਬੋਲਿਕ ਦੇ ਕੂਰਡੀਨੇਟ
ਕਿਸੇ ਵੀ ਸਮੇਂ
'ਤੇ, ਪ੍ਰਜੈਕਟਾਈਲ ਦੀ ਹੌਰੀਜੌਨਟਲ ਅਤੇ ਵਰਟੀਕਲ ਵਿਸਥਾਪਨ ਇਸ ਤਰਾਂ ਲੱਭੇ ਜਾਂਦੇ ਹਨ:
,
.
ਵਿਸਥਾਪਣ ਦਾ ਮੈਗਨੀਟੀਉਡ ਇਸ ਤਰਾਂ ਲੱਭਿਆ ਜਾ ਸਕਦਾ ਹੈ:
.
ਇਸ ਸਮੀਕਰਨ ਨੂੰ ਵੇਖੋ,
.
ਜ t ਦੋਨਾਂ ਸਮੀਕਰਨਾਂ ਵਿਚੋਂ ਕੱਢ ਦਿੱਤੀ ਜਾਵੇ ਤਾਂ ਇਹ ਸਮੀਕਰਨ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ:
.
,
, ਅਤੇ
ਲਗਾਤਾਰ ਹਨ,
,
ਇਸਦੇ ਵਿੱਚ
ਅਤੇ
ਕਾਂਸਟੈਂਟ ਹਨ।
ਇਹ ਪੈਰਾਬੋਲਾ ਦੀ ਸਮੀਕਰਣ ਹੈ, ਇਸ ਲਈ ਮਾਰਗ ਵੀ ਪੈਰਾਬੋਲਿਕ ਹੈ। ਪੈਰਾਬੋਲ ਦੀ ਧੁਰੀ ਲੰਬਕਾਰੀ ਹੈ।
ਜੇਕਰ ਪ੍ਰਜੈਕਟਾਈਲ ਦੀ ਸਥਿਤੀ (x,y) ਅਤੇ ਕੋਣ (θ or α) ਸਾਨੂੰ ਪਤਾ ਹਣ, ਤਾਂ ਫਿਰ ਸ਼ੁਰੂਆਤੀ ਵੇਗ
ਉੱਪਰ ਦਿੱਤੀ ਹੋਈ ਸਮੀਕਰਨ ਵਿਚੋਂ ਲੱਭਿਆ ਜਾ ਸਕਦਾ ਹੈ:
.
ਫਲਾਈਟ ਦਾ ਸਮਾਂ ਜਾਂ ਪੂਰੇ ਸਫ਼ਰ ਦਾ ਕੁੱਲ ਸਮਾਂ[ਸੋਧੋ]
ਓਹ ਕੁੱਲ ਸਮਾਂ
ਜਿਸ ਵਿੱਚ ਪ੍ਰਜੈਕਟਾਈਲ ਹਵਾ ਵਿੱਚ ਰਹਿੰਦਾ ਹੈ, ਉਸਨੂੰ ਫਲਾਈਟ ਦਾ ਸਮਾਂ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਫਲਾਈਟ ਤੋਂ ਬਾਅਦ, ਪ੍ਰਜੈਕਟਾਈਲ ਵਾਪਸ ਖਿਤਿਜੀ ਧੁਰੀ (x-ਧੁਰਾ) 'ਤੇ ਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ y = 0 ਹੋ ਜਾਂਦਾ ਹੈ:




ਨੋਟ ਕਰੋ ਕਿ ਅਸੀਂ ਪ੍ਰਜੈਕਟਾਈਲ ਤੇ ਹਵਾ ਦੇ ਟਾਕਰੇ ਨੂੰ ਨਜ਼ਰਅੰਦਾਜ਼ ਕੀਤਾ ਹੈ।
ਪ੍ਰਜੈਕਟਾਈਲ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਉਚਾਈ[ਸੋਧੋ]
Maximum height of projectile
ਸਭ ਤੋਂ ਵੱਡੀ ਉਚਾਈ ਜਿਥੇ ਤੱਕ ਵਸਤੂ ਪਹੁੰਚੇਗੀ ਉਹ ਵਸਤੂ ਦੇ ਪੀਕ ਵਜੋਂ ਜਾਣੀ ਜਾਂਦੀ ਹੈ।
ਉਚਾਈ ਵਿੱਚ ਵਾਧਾ ਸਿਰਫ਼
ਤੱਕ ਹੀ ਰਹੇਗਾ, ਜੋ ਕਿ,
.
ਵੱਧ ਤੋਂ ਵੱਧ ਉਚਾਈ ਤੱਕ ਪਹੁੰਚਣ ਦਾ ਸਮਾਂ:
.
ਪ੍ਰਜੈਕਟਾਈਲ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਉਚਾਈ ਦੇ ਲੰਬਕਾਰੀ ਵਿਸਥਾਪਨ ਤੋਂ:

.
ਹੌਰੀਜੋਟਲ ਰੇਂਜ ਅਤੇ ਵੱਧ ਤੋਂ ਵੱਧ ਉਚਾਈ ਵਿਚਕਾਰ ਸਬੰਧ[ਸੋਧੋ]
ਹੌਰੀਜੋਟਲ ਸਪਾਟ 'ਤੇ ਰੇਂਜ
ਅਤੇ ਵੱਧ ਤੋਂ ਵੱਧ ਉਚਾਈ
ਦੇ ਵਿਚਕਾਰ ਦਾ ਸਬੰਧ
ਤੇ ਹੈ:


× 

.
- ↑ Galileo Galilei, Two New Sciences, Leiden, 1638, p.249
- ↑
ਗ੍ਰੈਵਟੀ ਦੇ ਕਾਰਨ ਪ੍ਰਵੇਗ ਹੈ(
ਧਰਤੀ ਦੀ ਸਤਹ ਦੇ ਕੋਲ).