ਲੀਨੀਅਰ ਮੈਪ

ਵਿਕੀਪੀਡੀਆ, ਇੱਕ ਅਜ਼ਾਦ ਗਿਆਨਕੋਸ਼ ਤੋਂ
Jump to navigation Jump to search

ਲੀਨੀਅਰ ਮੈਪ ਉਹ ਹੋਮੋਮੌਰਫਿਜ਼ਮ ਹੁੰਦਾ ਹੈ ਜੋ ਵੈਕਟਰ ਸਪੇਸ ਬਣਤਰ ਨੂੰ ਸੁਰੱਖਿਅਤ ਕਰਦਾ ਹੈ, ਜਿਸ ਨੂੰ 'ਅਬੇਲੀਅਨ ਗਰੁੱਪ' ਬਣਤਰ ਅਤੇ ਸਕੇਲਰ ਗੁਣਨਫਲ ਕਹਿੰਦੇ ਹਨ। ਸਕੇਲਰ ਕਿਸਮ ਹੋਰ ਅੱਗੇ ਹੋਮੋਮੌਰਫਿਜ਼ਮ ਵਿਸ਼ੇਸ਼ ਤੌਰ ਤੇ ਦਰਸਾਉਂਦੀ ਹੋਣ ਲਈ ਦਰਸਾਈ ਜਾਣੀ ਚਾਹੀਦੀ ਹੈ, ਜਿਵੇਂ, ਹਰੇਕ R-ਲੀਨੀਅਰ ਮੈਪ ਇੱਕ Z-ਲੀਨੀਅਰ ਮੈਪ ਹੁੰਦਾ ਹੈ, ਪਰ ਹਰੇਕ Z-ਲੀਨੀਅਰ ਮੈਪ R-ਲੀਨੀਅਰ ਮੈਪ ਨਹੀਂ ਹੁੰਦਾ।

ਪਰਿਭਾਸ਼ਾ ਅਤੇ ਪਹਿਲੇ ਨਤੀਜੇ[ਸੋਧੋ]

ਮੰਨ ਲਓ V ਅਤੇ W ਇੱਕੋ ਫੀਲਡ K ਉੱਤੇ ਵੈਕਟਰ ਸਪਸਾਂ ਹੋਣ। ਇੱਕ ਫੰਕਸ਼ਨ f: V → W ਇੱਕ ਲੀਨੀਅਰ ਮੈਪ ਕਿਹਾ ਜਾਵੇਗਾ ਜੇਕਰ V ਵਚਲੇ ਕਿਸੇ ਦੋ ਵੈਕਟਰਾਂ x ਅਤੇ y ਲਈ, ਅਤੇ K ਵਿਚਲੇ ਕਿਸੇ ਸਕੇਲਰ α ਲਈ, ਹੇਠਾਂ ਲਿਖੀਆਂ ਦੋ ਸ਼ਰਤਾਂ ਦੀ ਪਾਲਣਾ ਹੋਵੇ:

ਜੋੜ ਵਿਸ਼ੇਸ਼ਤਾ (ਏਡਟੀਵਿਟੀ)
1 ਡਿਗਰੀ ਦੀ ਹੋਮੋਜੀਨੀਅਟੀ (ਇੱਕਸਾਰਤਾ)

ਇਹ ਵੈਕਟਰਾਂ ਦੇ ਕਿਸੇ ਲੀਨੀਅਰ (ਰੇਖਿਕ) ਮੇਲ ਲਈ ਇਸੇ ਚੀਜ਼ ਦੀ ਮੰਗ ਕਰਨ ਦੇ ਬਰਾਬਰ ਹੈ, ਯਾਨਿ ਕਿ, ਕਿਸੇ ਵੀ ਵੈਕਟਰਾਂ x1, ..., xmV ਲਈ ਅਤੇ ਸਕੇਲਰਾਂ a1, ..., amK ਲਈ, ਹੇਠਾਂ ਲਿਖੀਆਂ ਸਮਾਨਤਾਵਾਂ ਲਾਗੂ ਰਹਿੰਦੀਆਂ ਹਨ:

ਵੈਕਟਰ ਸਪੇਸਾਂ V ਅਤਵੇ W ਦੇ ਜ਼ੀਰੋ ਐਲੀਮੈਂਟਾਂ ਨੂੰ ਕ੍ਰਮਵਾਰ 0V ਅਤੇ 0W ਨਾਲ ਲਿਖਦੇ ਹੋਏ, ਇਹ ਪਤਾ ਚਲਦਾ ਹੈ ਕਿ f(0V) = 0W ਹੈ ਕਿਉਂਕਿ α = 0 ਹੋਣ ਦੇਣ ਤੇ ਹੋਮੋਜੀਨੀਅਟੀ (ਇੱਕਸਾਰਤਾ) ਦੀ 1 ਡਿਗਰੀ ਲਈ ਸਮੀਕਰਨ ਇਹ ਬਣ ਜਾਂਦੀ ਹੈ;

ਕੁੱਝ ਮੌਕਿਆਂ ਉੱਤੇ, V ਅਤੇ W ਨੂੰ ਵੱਖਰੀਆਂ ਫੀਲਡਾਂ ਉੱਤੇ ਵੈਕਟਰ ਸਪੇਸਾਂ ਵੀ ਮੰਨਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਫੇਰ ਇਹ ਦਰਸਾਉਣਾ ਲਾਜ਼ਮੀ ਹੋ ਜਾਂਦਾ ਹੈ ਕਿ ਇਹਨਾਂ ਗਰਾਉਂਡ ਫੀਲਡਾਂ ਵਿੱਚੋਂ ਕਿਸ ਨੂੰ ‘ਲੀਨੀਅਰ’ ਦੀ ਪਰਿਭਾਸ਼ਾ ਵਿੱਚ ਵਰਤਿਆ ਜਾ ਰਿਹਾ ਹੈ। ਜੇਕਰ V ਅਤੇ W ਨੂੰ ਉੱਪਰ ਦੱਸੇ ਮੁਤਾਬਿਕ ਫੀਲਡ K ਉੱਤੇ ਸਪੇਸਾਂ ਦੇ ਤੌਰ ਤੇ ਲਿਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਅਸੀਂ K-ਲੀਨੀਅਰ ਮੈਪਾਂ ਬਾਰੇ ਗੱਲ ਕਰ ਰਹੇ ਹੁੰਦੇ ਹਾਂ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਕੰਪਲੈਕਸ ਨੰਬਰਾਂ ਦੇ ਕੰਜੂਗੇਟ ਇੱਕ R-ਲੀਨੀਅਰ ਮੈਪ C → C ਹੁੰਦੇ ਹਨ, ਪਰ ਇਹ C-ਲੀਨੀਅਰ ਮੈਪ ਨਹੀਂ ਹੁੰਦੇ।

V ਤੋਂ K ਤੱਕ ਦੇ ਇੱਕ ਲੀਨੀਅਰ ਮੈਪ (ਇਸ ਦੇ ਅਪਣੇ ਉੱਤੇ ਇੱਕ ਵੈਕਟਰ ਸਪੇਸ ਦੇ ਤੌਰ ਤੇ ਦੇਖੇ ਜਾਣ ਵਾਲੇ K ਨਾਲ) ਨੂੰ ਇੱਕ ਲੀਨੀਅਰ ਫੰਕਸ਼ਨਲ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਬਣਾਵਟ[ਸੋਧੋ]

ਇਹ ਸਟੇਟਮੈਂਟਾਂ (ਕਥਨ) ਕਿਸੇ ਵੀ ਖੱਬੇ-ਮਾਪਾਂਕ RM ਤੱਕ ਕਿਸੇ ਰਿੰਗ R ਉੱਤੇ ਬਗੈਰ ਸੁਧਾਰ ਤੋਂ ਸਰਵ ਸਧਾਰਨ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਅਤੇ ਕਿਸੇ ਸੱਜੇ-ਮਾਪਾਂਕ ਤੱਕ ਸਕੇਲਰ ਗੁਣਨਫਲ ਨੂੰ ਉਲਟਾਉਣ ਨਾਲ ਸਰਵ ਸਧਾਰਨ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ।

ਹਵਾਲਾ[ਸੋਧੋ]