ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ

ਵਿਕੀਪੀਡੀਆ, ਇੱਕ ਅਜ਼ਾਦ ਗਿਆਨਕੋਸ਼ ਤੋਂ
Jump to navigation Jump to search

ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ' ਹਿਸਾਬ ਵਿੱਚ ਇੱਕ ਇੱਕ ਚਲ ਵਾਲੀ ਦੋ ਡਿਗਰੀ ਦੀ ਬਹੁਪਦੀ ਸਮੀਕਰਨ ਹੁੰਦੀ ਹੈ। ਇੱਕ ਸਧਾਰਨ ਦੋ ਘਾਤੀ ਸਮੀਕਰਨ ਨੂੰ ਇਵੇਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ:

ਜਿਥੇ x ਇੱਕ ਚਲ ਜਾਂ ਅਗਿਆਤ ਅੰਕ ਹੈ, ਅਤੇ a, b, ਅਤੇ c ਅਚਲ ਹਨ ਅਤੇ a 0 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੈ। (ਜੇ a = 0, ਤਾਂ ਸਮੀਕਰਨ ਲਕੀਰੀ ਸਮੀਕਰਨ ਹੈ) ਉੱਪਰੋਕਤ ਸਮੀਕਰਨ ਨੂੰ a ਨਾਲ ਵੰਡ ਕੇ ਮੋਨਿਕ, ਯਾਨੀ ਮੋਹਰੀ ਗੁਣਾਂਕ ਇੱਕ ਵਾਲਾ ਰੂਪ ਹੈ: ਜਿਥੇ ਅਤੇ

ਦੋ ਘਾਤੀ ਸਮੀਕਰਣ ਦੇ ਮੂਲ[ਸੋਧੋ]

ਕਿਸੇ ਦੋਘਾਤੀ ਸਮੀਕਰਣ ਦੇ ਦੋ (ਵੱਖ ਹੋਣਾ ਜ਼ਰੂਰੀ ਨਹੀ) ਹੱਲ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਦੋਘਾਤੀ ਸਮੀਕਰਣ ਦੇ ਮੂਲ ਜਾਂ ਹੱਲ ਕਹਿੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਸਮੀਕਰਨ- ਦੇ ਦੁਆਰਾ ਹਾਸਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਜਿਥੇ ਚਿੰਨ੍ਹ ± ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ

ਅਤੇ

ਦੋਨੋਂ ਹੀ ਹੱਲ ਹਨ।