ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ

ਵਿਲਸਨ ਅਭਾਜ ਸੰਖਿਆ

ਵਿਕੀਪੀਡੀਆ, ਇੱਕ ਆਜ਼ਾਦ ਵਿਸ਼ਵਕੋਸ਼ ਤੋਂ
ਵਿਲਸਨ ਅਭਾਜ ਸੰਖਿਆ
Named afterਜਾਨ ਵਿਲਸਨ
Publication year1938[1]
Author of publicationਇਮਾ ਲਹਿਮਰ
No. of known terms3
First terms5, 13, 563
Largest known term563
OEIS index
  • A007540
  • ਵਿਲਸਨ ਅਭਾਜ ਸੰਖਿਆ: ਅਭਾਜ ਸੰਖਿਆ p ਇਸਤਰ੍ਹਾ ਹੋਵੇ ਕਿ (p-1)! == -1 (mod p^2)

ਵਿਲਸਨ ਅਭਾਜ ਸੰਖਿਆ, ਦਾ ਨਾਮ ਅੰਗਰੇਜ਼ ਗਣਿਤ ਸ਼ਾਸ਼ਤਰੀ ਜਾਨ ਵਿਲਸਨ, ਦੇ ਨਾਮ ਤੇ ਪਿਆ। ਅਭਾਜ ਸੰਖਿਆ p ਇਸਤਰ੍ਹਾਂ ਹੈ ਕਿ p2, (p − 1)! + 1 ਨੂੰ ਵੰਡਦਾ ਹੈ ਜਿਥੇ "!" ਦਾ ਮਤਲਵ ਕ੍ਰਮਗੁਣਿਤ ਹੈ: ਇਸ ਦਾ ਮਿਲਾਣ ਵਿਲਸਨ ਪ੍ਰਮੇਯ ਨਾਲ ਕਰੋ ਜਿਸ ਦੀ ਪ੍ਰੀਭਾਸ਼ਾ ਹੈ ਕਿ ਹਰ ਅਭਾਜ ਸੰਖਿਆ p, (p − 1)! + 1 ਨੂੰ ਵੰਡਦੀ ਹੈ।

ਹੁਣ ਤੱਕ ਦੇ ਵਿਲਸਨ ਅਭਾਜ ਸੰਖਿਆਵਾਂ 5, 13, ਅਤੇ 563 ਹਨ। ਜੇ ਕੋਈ ਹੋਰ ਸੰਖਿਆ ਹੈ ਤਾਂ ਉਹ ਸੰਖਿਆ 2×1013 ਤੋਂ ਵੱਡੀ ਹੋਵੇਗੀ।[2] ਹੁਣ ਤੱਕ ਬਹੁਤ ਸਾਰੇ ਕੰਪਿਉਟਰ ਮਾਹਰਾਂ ਨੇ ਹੋਰ ਵਿਲਸਨ ਅਭਾਜ ਸੰਖਿਆ ਨੂੰ ਲੱਭਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕੀਤੀ ਹੈ ਪਰ ਸਫਲ ਨਹੀਂ ਹੋਏ।[3][4][5]

Generalizations

[ਸੋਧੋ]

ਵਿਲਸਨ ਅਭਾਜ ਸੰਖਿਆ ਆਰਡਰ ਨੰ n

[ਸੋਧੋ]

ਵਿਲਸਨ ਪ੍ਰਮੇਯ ਨੂੰ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ: ਹਰੇਕ ਪੂਰਨ ਸੰਖਿਆ ਅਤੇ ਅਭਾਜ ਸੰਖਿਆ ਲਈ ਹੁੰਦਾ ਹੈ।

ਆਰਡਰ n ਦਾ ਵਿਲਸਨ ਅਭਾਜ ਸੰਖਿਆ ਹੋਵੇਗੀ ਜੇ ਅਭਾਜ ਸੰਖਿਆ p ਇਸਤਰ੍ਹਾ ਹੈ ਕਿ divides

prime ਤਾਂ ਕਿ , ਨੂੰ ਵੰਡਦਾ ਹੈ।(10000 ਤੱਕ ਲੱਭਿਆ ਗਿਆ ਹੈ) OEIS ਤਰਤੀਬ
1 5, 13, 563, ... ਫਰਮਾ:OEIS link
2 2, 3, 11, 107, 4931, ... ਫਰਮਾ:OEIS link
3 7, ...
4 10429, ...
5 5, 7, 47, ...
6 11, ...
7 17, ...
8 ...
9 541, ...
10 11, 1109, ...
11 17, 2713, ...
12 ...
13 13, ...
14 ...
15 349, ...
16 31, ...
17 61, 251, 479, ... ਫਰਮਾ:OEIS link
18 13151527, ...
19 71, ...
20 59, 499, ...
21 217369, ...
22 ...
23 ...
24 47, 3163, ...
25 ...
26 97579, ...
27 53, ...
28 347, ...
29 ...
30 137, 1109, 5179, ...

Least generalized Wilson prime of order n are

5, 2, 7, 10429, 5, 11, 17, ... (The next term > 1.4×107) (ਓਈਆਈਐੱਸ ਵਿੱਚ ਤਰਤੀਬ A128666)

Near-Wilson primes

[ਸੋਧੋ]

ਹਵਾਲੇ

[ਸੋਧੋ]
  1. Lehmer, Emma (April 1938). "On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson" (PDF). Annals of Mathematics. 39 (2): 350–360. doi:10.2307/1968791. JSTOR 1968791. Retrieved 8 March 2011.
  2. A Search for Wilson primes Retrieved on November 2, 2012.
  3. McIntosh, R. (9 March 2004). "WILSON STATUS (Feb. 1999)". E-Mail to Paul Zimmermann. Retrieved 6 June 2011.
  4. A search for Wieferich and Wilson primes, p 443
  5. Nakli itihaas jo likheya geya hai kade na vaapriya jo ohna de base te, saade te saada itihaas bna ke ehna ne thop dittiyan. anglo sikh war te ek c te 3-4 jagaha te kiwe chal rahi c ikko war utto saal 1848 jdo angrej sara punjab 1845 ch apne under kar chukke c te oh 1848 ch kihna nal jang ladd rahe c. Script error: The function "citation198.168.27.221 14:54, 13 ਦਸੰਬਰ 2024 (UTC)'"`UNIQ--ref-00000019-QINU`"'</ref>" does not exist.
ਹਵਾਲੇ ਵਿੱਚ ਗ਼ਲਤੀ:<ref> tag defined in <references> has no name attribute.