ਪਰਮਾਣੂ

ਵਿਕੀਪੀਡੀਆ, ਇੱਕ ਅਜ਼ਾਦ ਗਿਆਨਕੋਸ਼ ਤੋਂ
ਇਸ ’ਤੇ ਜਾਓ: ਨੇਵੀਗੇਸ਼ਨ, ਖੋਜ
ਹੀਲੀਅਮ ਐਟਮ
ਹੀਲੀਅਮ ਐਟਮ ਗਰਾਊਂਡ ਸਟੇਟ
ਹੀਲੀਅਮ ਐਟਮ ਦਾ ਚਿੱਤਰ, ਜਿਸ ਵਿੱਚ ਨਿਊਕਲੀ (ਗੁਲਾਬੀ) ਅਤੇ ਬਿਜਲਾਣੂ ਬੱਦਲ ਵਿਤਰਣ (ਕਾਲਾ) ਦਰਸਾਇਆ ਹੈ। ਹੀਲੀਅਮ-4 ਦੀ ਨਿਊਕਲੀ (ਉੱਪਰ ਸੱਜੇ) ਦਰਅਸਲ ਗੋਲਾਕਾਰੀ ਤੌਰ ਤੇ ਸਮਿਟਰੀਗਤ ਹੈ ਅਤੇ ਬਿਜਲਾਣੂ ਬੱਦਲ ਨਾਲ ਨੇੜਿਉਂ ਸਗਵੀਂ ਹੈ, ਭਾਵੇਂ ਵਧੇਰੇ ਜਟਿਲ ਨਿਊਕਲੀਆਂ ਹਮੇਸ਼ਾ ਇਹ ਗੱਲ ਨਹੀਂ ਹੁੰਦੀ। ਬਲੈਕ ਬਾਰ ਇੱਕ ਐਂਗਸਟੋਰਮ ਹੈ (10−੧੦ m or ੧੦੦ pm)।
ਵਰਗੀਕਰਨ
Smallest recognized division of a chemical element
ਗੁਣ
ਪੁੰਜ ਰੇਂਜ: ੧.67×10−੨੭ to ੪.52×10−੨੫ kg
ਇਲੈਕਟਰਿਕ ਚਾਰਜ: ਜ਼ੀਰੋ (ਨਿਰਪੱਖ), ਜਾਂ ਆਇਨ ਚਾਰਜ
ਵਿਆਸ ਰੇਂਜ: 62 pm (He) ਤੋਂ 520 pm (Cs) (data page)
ਭਾਗ: ਇਲੈਕਟਰਾਨ ਅਤੇ ਪਰੋਟੋਨਾਂ ਅਤੇ ਨਿਊਟਰਾਨਾਂ ਦੀ ਇੱਕ ਗਠਵੀਂ ਨਿਊਕਲੀ

ਪਰਮਾਣੂ (ਸੰਸਕ੍ਰਿਤ ਤੋਂ : परमाणु) ਜਾਂ ਐਟਮ (ਯੂਨਾਨੀ ਤੋਂ : ἄτομος) ਮਾਦਾ ਦੀ ਮੂਲ ਇਕਾਈ ਹੈ ਜਿਸ ਵਿੱਚ ਇੱਕ ਸੰਘਣਾ ਕੇਂਦਰ ਹੁੰਦਾ ਹੈ ਜਿਸ ਦੇ ਆਲੇ-ਦੁਆਲੇ ਇਲੈਕਟ੍ਰਾਨਾ ਦਾ ਨੈਗੇਟਿਵ ਚਾਰਜ ਵਾਲਾ ਬੱਦਲ ਹੁੰਦਾ ਹੈ। ਹਾਈਡਰੋਜਨ ਨੂੰ ਛੱਡ ਕੇ ਹਰ ਐਲੀਮੈਂਟ ਦੇ ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਪਾਜ਼ੀਟਿਵ ਚਾਰਜ ਵਾਲੇ ਪ੍ਰੋਟਾਨ ਅਤੇ ਨਿਊਟ੍ਰਲ ਚਾਰਜ ਵਾਲੇ ਨਿਊਟ੍ਰਾਨ ਹੁੰਦੇ ਹਨ। ਇਲੈਕਟ੍ਰੋਮੈਗਨੇਟਿਕ ਬਲ ਇਲੈਕਟ੍ਰਾਨਾ ਨੂੰ ਨਿਊਕਲੀਅਸ ਨਾਲ ਬੰਨ੍ਹ ਕੇ ਰੱਖਦਾ ਹੈ ਅਤੇ ਨਿਊਕਲੀਅਸ ਵਿਚਾਲੇ ਸਟ੍ਰਾਂਗ ਬਲ ਪ੍ਰੋਟਾਨਾਂ ਨੂੰ ਆਪਸ ਵਿੱਚ ਜੋੜੀ ਰੱਖਦਾ ਹੈ।[੧]

ਐਟਮ ਦੋ ਲਫ਼ਜ਼ਾਂ ਤੋਂ ਬਣਿਆ ਹੈ, "ἄτομος"—ਐਟਮੌਸ (α-, "ਅਨ-" + τέμνω - ਟੈਮਨੋ, "ਕੱਟਣਾ"), ਜਿਸ ਦਾ ਮਤਲਬ ਹੈ ਨਾ ਕੱਟਿਆ ਜਾਂ ਵੰਡਿਆ ਜਾਣ ਵਾਲਾ। ਮਾਦੇ ਦੀ ਨਾ ਵੰਡੀ ਜਾਣ ਵਾਲੀ ਇਕਾਈ ਵਜੋਂ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਐਟਮ ਨੂੰ ਭਾਰਤੀ ਅਤੇ ਗ੍ਰੀਕ ਫ਼ਿਲਾਸਫ਼ਰਾਂ ਨੇ ਮੰਨਿਆ। ੧੭ਵੀਂ ਅਤੇ ੧੮ਵੀਂ ਸਦੀ ਦੌਰਾਨ ਸਾਇੰਸਦਾਨਾਂ ਨੇ ਵਿਖਾਇਆ ਕਿ ਮਾਦੇ ਨੂੰ ਰਸਾਇਣਕ ਤਰੀਕਿਆਂ ਰਾਹੀਂ ਤੋੜਿਆ ਜਾ ਸਕਦਾ ਹੈ ।੧੯ਵੀਂ ਅਤੇ ੨੦ਵੀਂ ਸਦੀ ਦੌਰਾਨ ਸਾਇੰਸਦਾਨਾਂ ਨੇ ਐਟਮ ਬਣਾਉਣ ਵਾਲੀਆਂ ਇਕਾਈਆਂ ਦੀ ਖੋਜ ਕਰ ਕੇ ਸਿੱਧ ਕੀਤਾ ਕਿ ਐਟਮ ਮੂਲ ਰੂਪ ਵਿੱਚ ਨਾ-ਟੁੱਟਣਯੋਗ ਨਹੀਂ ਹੈ। ਇਸ ਤੋਂ ਬਾਅਦ ਕੁਆਂਟਮ ਸਿਧਾਂਤ ਦਾ ਜਨਮ ਹੋਇਆ। [੨]

ਵਿਗਿਆਨਕ ਸਿਧਾਂਤ ਦੀ ਉਤਪਤੀ[ਸੋਧੋ]

ਜੌਹਨ ਡਾਲਟਨ ਵੱਲੋਂ ਦਰਸਾਏ ਵੱਖਰੋ-ਵੱਖਰੇ ਅਣੂ ਅਤੇ ਪਰਮਾਣੂ

੧੭੮੯ ਵਿੱਚ, ਫ਼ਰਾਂਸੀਸੀ ਸਾਇੰਸਦਾਨ ਐਨਟੋਨੀ ਲੈਵੋਇਜ਼ੀਅਰ ਨੇ ਰਸਾਇਣਕ-ਭਾਰ ਦੇ ਸੰਭਾਲ ਦਾ ਨੇਮ ਪ੍ਰਕਾਸ਼ਿਤ ਕੀਤਾ।[੩]

੧੮੦੩ ਵਿੱਚ, ਅੰਗਰੇਜ਼ੀ ਫ਼ਿਲਾਸਫ਼ਰ ਅਤੇ ਸਾਇੰਸਦਾਨ ਜੌਹਨ ਡਾਲਟਨ ਨੇ ਪਰਮਾਣੂ ਦਾ ਸਿਧਾਂਤ ਵਰਤ ਕੇ ਦਰਸਾਇਆ ਕਿ ਰਸਾਇਣਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ(chemical reaction) ਕਿਵੇਂ ਵਰਤਦੀਆਂ ਹਨ। [੪][੫][੬]

ਇਸ ਸਿਧਾਂਤ ਨੂੰ ਵਧੇਰੇ ਨਰੋਆਪਣ ੧੮੨੭ ਵਿੱਚ ਰੌਬਰਟ ਬ੍ਰਾਊਨ ਦੇ 'ਬ੍ਰਾਓਨੀਅਨ ਮੋਸ਼ਨ' ਦੀ ਵਿਆਖਿਆ ਨੇ ਦਿੱਤਾ। ਜੇ.ਡੇਸੌਲਕਸ ਨੇ ੧੮੭੭ ਵਿੱਚ ਇਹ ਵਿਚਾਰ ਦਿੱਤਾ ਕਿ ਇਹ ਵਰਤਾਰਾ ਤਾਪ-ਬਲ ਕਰਕੇ ਹੁੰਦਾ ਹੈ ਅਤੇ ੧੯੦੫ ਵਿੱਚ ਐਲਬਰਟ ਆਈਨਸਟਾਈਨ ਨੇ ਇਸ ਨੂੰ ਹਿਸਾਬ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਸਿੱਧ ਕੀਤਾ। [੭][੮][੯] ਫ਼੍ਰਾਂਸੀਸੀ ਭੌਤਿਕ ਵਿਗਿਆਨੀ, ਜੀਨ ਪੈਰਿਨ ਨੇ ਡਾਲਟਨ ਵੱਲੋਂ ਦਿੱਤੇ ਸਿਧਾਂਤ ਨੂੰ ਪ੍ਰਯੋਗਾਤਮਕ ਤਰੀਕੇ ਨਾਲ ਸਿੱਧ ਕੀਤਾ।[੧੦]

ਮੈਂਡਲੀਵ ਦਾ ਪਹਿਲਾ ਪੀਰੀਆਡਿਕ ਟੇਬਲ

ਪਹਿਲੀਆਂ ਖੋਜਾਂ ਦੇ ਆਧਾਰ ਉੱਤੇ ੧੮੬੯ ਵਿੱਚ ਦਮਿਤਰੀ ਮੈਂਡਲਈਵ ਨੇ ਪਹਿਲਾ ਪੀਰੀਆਡਿਕ ਟੇਬਲ ਬਣਾਇਆ।[੧੧][੧੨]

ਥਾਮਸਨ ਦਾ ਪਰਮਾਣੂ ਮਾਡਲ[ਸੋਧੋ]

ਜੇ. ਜੇ. ਥਾਮਸਨ ਨੇ ਪਰਮਾਣੂ ਦੀ ਬਣਤਰ ਨਾਲ ਸਬੰਧਿਤ ਮਾਡਲ ਪੇਸ਼ ਕੀਤਾ, ਜੋ ਕਰਿਸਮਸ ਕੇਕ ਵਾਂਗ ਸੀ। ਇਨ੍ਹਾਂ ਦੇ ਅਨੁਸਾਰ ਪਰਮਾਣੂ ਇੱਕ ਧਨ-ਚਾਰਜਿਤ ਗੋਲਾ ਸੀ, ਜਿਸ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਲੱਗੇ ਹੋਏ ਸਨ। ਤਰਬੂਜ ਦੀ ਉਦਾਹਰਣ ਜਿਸ ਵਿੱਚ ਪਰਮਾਣੂ ਵਿੱਚ ਧਨ-ਚਾਰਜ ਤਰਬੂਜ ਦੇ ਖਾਣ ਵਾਲੇ ਲਾਲ ਭਾਗ ਵਾਂਗ ਖਿਲਰਿਆ ਹੈ, ਜਦ ਕਿ ਇਲੈਕਟ੍ਰਾੱਨ ਧਨ ਚਾਰਜਿਤ ਗੋਲੇ ਵਿੱਚ ਤਰਬੂਜ ਦੇ ਬੀਜ ਵਾਂਗ ਖੁੱਭੇ ਹਨ।

ਸੁਝਾਅ[ਸੋਧੋ]

  • ਪਰਮਾਣੂ ਧਨ-ਚਾਰਜਿਤ ਗੋਲੇ ਦ ਬਣਿਆ ਹੋਇਆ ਹੈ ਅਤੇ ਰਿਣ ਚਾਰਜਿਤ ਇਲੈਕਟ੍ਰਾੱਨ ਉਸ ਵਿੱਚ ਖੁੱਭੇ ਹੁੰਦ ਹਨ।
  • ਰਿਣਾਤਮਕ ਅਤੇ ਧਨਾਤਮਕ ਚਾਰਜ ਮਾਤਰਾ ਵਿੱਚ ਸਮਾਨ ਹੁੰਦੇ ਹਨ ਇਸਲਈ ਪਰਮਾਣੂ ਬਿਜਲਈ ਰੂਪ ਵਿੱਚ ਉਦਾਸੀਨ ਹੁੰਦੇ ਹਨ।

ਕੁਆਂਟਮ ਸਿੱਧਾਂਤ[ਸੋਧੋ]

ਜੇ.ਜੇ.ਥੌਮਸਨ ਨੇ ਕੈਥੋਡ ਕਿਰਨਾਂ ਉੱਪਰ ਕੀਤੀ ਸੋਧ ਦੇ ਆਧਾਰ ਉੱਤੇ ੧੮੯੭ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਖੋਜ ਕੀਤੀ। [੧੩] ੧੯੦੯ ਵਿੱਚ ਗੀਗਰ ਅਤੇ ਮਾਰਸ਼ਡੈਨ ਨੇ ਅਰਨਸਟ ਰੁਦਰਫ਼ੋਰਡ ਦੀ ਅਗਵਾਈ ਹੇਠ ਪਰਮਾਣੂ ਦਾ ਰੁਦਰਫ਼ੋਰਡ ਮਾਡਲ ਦਿੱਤਾ।[੧੪]

ਨੀਲ ਬੋਹਰ ਦਾ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦਾ ਮਾਡਲ ਜਿਸ ਵਿੱਚ ਇਲੈਕਟ੍ਟ੍ਰਾਨ ਨੂੰ ਔਰਬਿਟ ਬਦਲਦੇ ਵਿਖਾਇਆ ਗਿਆ ਹੈ

੧੯੧੩ ਵਿੱਚ ਨੀਲ ਬੋਹਰ ਨੇ ਦੱਸਿਆ ਕਿ ਇਲੈਕਟ੍ਰਾਨ ਨੂੰ ਨਿਊਕਲੀਅਸ ਦੁਆਲੇ ਨਿਸ਼ਚਤ ਬਲ ਵਾਲੀਆਂ ਔਰਬਿਟ ਮੁਹੱਈਆ ਕੀਤੀਆਂ ਗਈਆਂ ਹਨ। [੧੫] ੧੯੩੨ ਵਿੱਚ ਚਾਡਵਿਕ ਨੇ ਨਿਊਕਲੀਅਸ ਵਿਚਲੇ ਨਿਊਟ੍ਰਾਨ ਦੀ ਖੋਜ ਕੀਤੀ। [੧੬]

ਹਵਾਲੇ[ਸੋਧੋ]

  1. Slaven, Dave. "What holds an atom together?". http://webs.morningside.edu/slaven/Physics/atom/atom2.html. 
  2. Harrison (2003:123–139).
  3. "Lavoisier's Elements of Chemistry". Elements and Atoms. Le Moyne College, Department of Chemistry. http://web.lemoyne.edu/~GIUNTA/EA/LAVPREFann.HTML. Retrieved on 2007-12-18. 
  4. Wurtz (1881:12).
  5. Dalton (1808).
  6. Patterson, Elizabeth C. (1970). John Dalton and the Atomic Theory. Garden City, New York: Anchor. 
  7. Einstein, Albert (1905). "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen" (in German) (PDF). Annalen der Physik 322 (8): 549–560. doi:10.1002/andp.19053220806. http://www.zbp.univie.ac.at/dokumente/einstein2.pdf. Retrieved on ੪ ਫਰਵਰੀ ੨੦੦੭. 
  8. Mazo (2002:1–7).
  9. Lee, Y.K.; Hoon, K. (1995). "Brownian Motion". Imperial College. http://www.doc.ic.ac.uk/~nd/surprise_95/journal/vol4/ykl/report.html. Retrieved on 2007-12-18. 
  10. Patterson, G. (2007). "Jean Perrin and the triumph of the atomic doctrine". Endeavour 31 (2): 50–53. doi:10.1016/j.endeavour.2007.05.003. http://www.ncbi.nlm.nih.gov/pubmed/17602746. 
  11. "Periodic Table of the Elements". The International Union of Pure and Applied Chemistry. November 1, 2007. http://old.iupac.org/reports/periodic_table/. Retrieved on 2010-05-14. 
  12. Scerri (2007:10–17).
  13. "J.J. Thomson". Nobel Foundation. 1906. http://nobelprize.org/nobel_prizes/physics/laureates/1906/thomson-bio.html. Retrieved on 2007-12-20. 
  14. Rutherford, E. (1911). "The Scattering of α and β Particles by Matter and the Structure of the Atom". Philosophical Magazine 21: 669–88. http://ion.elte.hu/~akos/orak/atfsz/atom/rutherford_atom11.pdf. 
  15. Stern, David P. (16 May 2005). "The Atomic Nucleus and Bohr's Early Model of the Atom". NASA/Goddard Space Flight Center. http://www-spof.gsfc.nasa.gov/stargaze/Q5.htm. Retrieved on 2007-12-20. 
  16. Chadwick, James (12 December 1935). "Nobel Lecture: The Neutron and Its Properties". Nobel Foundation. http://nobelprize.org/nobel_prizes/physics/laureates/1935/chadwick-lecture.html. Retrieved on 2007-12-21.