ਰੀਮਾੱਨੀਅਨ ਮੈਨੀਫੋਲਡ

ਵਿਕੀਪੀਡੀਆ, ਇੱਕ ਅਜ਼ਾਦ ਗਿਆਨਕੋਸ਼ ਤੋਂ
ਇਸ ਉੱਤੇ ਜਾਓ: ਨੇਵੀਗੇਸ਼ਨ, ਖੋਜ

ਡਿੱਫਰੈਂਸ਼ੀਅਲ ਰੇਖਾਗਣਿਤ ਅੰਦਰ, ਇੱਕ (ਸੁਚਾਰੂ) ਰੀਮਾੱਨੀਅਨ ਮੈਨੀਫੋਲਡ ਜਾਂ (ਸੁਚਾਰੂ) ਰੀਮਾੱਨੀਅਨ ਸਪੇਸ (M,g), ਹਰੇਕ ਬਿੰਦੂ ਉੱਤੇ ਸਪਰਸ਼ ਸਪੇਸ ਉੱਤੇ ਇੱਕ ਅੰਦਰੂਨੀ ਗੁਣਨਫਲ ਨਾਲ ਯੁਕਤ ਇੱਕ ਵਾਸਤਵਿਕ ਸੁਚਾਰੂ ਮੈਨੀਫੋਲਡ M ਹੁੰਦੀ ਹੈ, ਜੋ ਬਿੰਦੂ ਤੋਂ ਬਿੰਦੂ ਤੱਕ ਬਹੁਤ ਸੁਚਾੇੂ ਤਰੀਕੇ ਨਾਲ ਇਸ ਤਰਾਂ ਬਦਲਦੀ ਹੈ ਕਿ ਜੇਕਰ X ਅਤੇ Y, M ਉੱਤੇ ਵੈਕਟਰ ਫੀਲਡਾਂ ਹੋਣ, ਤਾਂ ਇੱਕ ਸੁਚਾਰੂ ਫੰਕਸ਼ਨ ਹੁੰਦਾ ਹੈ। ਅੰਦਰੂਨੀ ਗੁਣਨਫਲਾਂ ਦੇ ਪਰਿਵਾਰ ਨੂੰ ਇੱਕ ਰੀਮਾੱਨੀਅਨ ਮੈਟ੍ਰਿਕ (ਟੈਂਸਰ) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਹਨਾਂ ਸ਼ਬਦਾਂ ਦਾ ਨਾਮ ਜਰਮਨ ਗਣਿਤਸ਼ਾਸਤਰੀ ਬਰਨਹਾਰਡ ਰੀਮਾੱਨ ਦੇ ਨਾਮ ਤੋਂ ਰੱਖਿਆ ਗਿਆ ਹੈ। ਰੀਮਾੱਨੀਅਨ ਮੈਨੀਫੋਲਡਾਂ ਦਾ ਅਧਿਐਨ ਰੀਮਾੱਨੀਅਨ ਰੇਖਾਗਣਿਤ ਨਾਮਕ ਵਿਸ਼ਾ ਰਚਦਾ ਹੈ। ਇੱਕ ਰੀਮਾੱਨੀਅਨ ਮੈਟ੍ਰਿਕ (ਟੈਂਸਰ), ਐਂਗਲਾਂ, ਵਕਰਾਂ ਦੀਆਂ ਲੰਬਾਈਆਂ, ਖੇਤਰਫਲ ਜਾਂ ਘਣਫਲ, ਕਰਵੇਚਰ, ਫੰਕਸ਼ਨਾਂ ਦੇ ਗ੍ਰੇਡੀਅੰਟ ਅਤੇ ਵੈਕਟਰ ਫੀਲਡਾਂ ਦੇ ਡਾਇਵਰਜੰਸ ਵਰਗੀਆਂ ਵਿਭਿੰਨ ਰੇਖਾਗਣਿਤਿਕ ਧਾਰਨਾਵਾਂ ਨੂੰ ਕਿਸੇ ਰੀਮਾੱਨੀਅਨ ਮੈਨੀਫੋਲਡ ਉੱਤੇ ਪਰਿਭਾਸ਼ਿਤ ਕਰਾ ਸੰਭਵ ਕਰਦਾ ਹੈ।

ਜਾਣ-ਪਛਾਣ[ਸੋਧੋ]

ਸੰਖੇਪ ਸਾਰਾਂਸ਼[ਸੋਧੋ]

ਮੈਟ੍ਰਿਕ ਸਪੇਸਾਂ ਦੇ ਤੌਰ ਤੇ ਰੀਮਾੱਨੀਅਨ ਮੈਨੀਫੋਲਡ[ਸੋਧੋ]

ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ[ਸੋਧੋ]

ਰੀਮਾੱਨੀਅਨ ਮੈਟ੍ਰੀਸਿਜ਼[ਸੋਧੋ]

ਉਦਾਹਰਨਾਂ[ਸੋਧੋ]

ਪੁਲਬੈਕ ਮੈਟ੍ਰਿਕ[ਸੋਧੋ]

ਕਿਸੇ ਮੈਟ੍ਰਿਕ ਦੀ ਹੋਂਦ[ਸੋਧੋ]

ਆਇਸੋਮੀਟਰੀਆਂ[ਸੋਧੋ]

ਮੈਟ੍ਰਿਕ ਸਪੇਸਾਂ ਦੇ ਤੌਰ ਤੇ ਰੀਮਾੱਨੀਅਨ ਮੈਨੀਫੋਲਡ[ਸੋਧੋ]

ਡਾਇਆਮੀਟਰ[ਸੋਧੋ]

ਜਿਓਡੈਸਿਕ ਪੂਰਨਤਾ[ਸੋਧੋ]

ਇਹ ਵੀ ਦੇਖੋ[ਸੋਧੋ]

ਹਵਾਲੇ[ਸੋਧੋ]

ਬਾਹਰੀ ਲਿੰਕ[ਸੋਧੋ]