ਕੂਲੌਂਬ ਦਾ ਨਿਯਮ

ਵਿਕੀਪੀਡੀਆ, ਇੱਕ ਅਜ਼ਾਦ ਗਿਆਨਕੋਸ਼ ਤੋਂ
Jump to navigation Jump to search

ਕੂਲੌਂਬ ਨੇ ਚਾਰਜ ਹੋਈਆਂ ਚੀਜ਼ਾਂ ਦਰਮਿਆਨ ਫੋਰਸਾਂ ਨੂੰ ਨਾਪਣ ਲਈ ਬਹੁਤ ਸਾਰੇ ਪ੍ਰਯੋਗ ਕੀਤੇ । ਜਦੋਂ ਚਾਰਜ ਹੋਈਆਂ ਚੀਜ਼ਾਂ ਦੇ ਰੇਖਿਕ ਅਕਾਰ ਉਹਨਾਂ ਦਰਮਿਆਨ ਦੂਰੀ ਤੋਂ ਕਿਤੇ ਸੂਖਮ ਹੁੰਦੇ ਹਨ, ਤਾਂ ਉਹਨਾਂ ਦਾ ਅਕਾਰ ਇਗਨੋਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਅਤੇ ਚਾਰਜ ਹੋਈਆਂ ਚੀਜ਼ਾਂ ਨੂੰ ਪੋਆਇੰਟ ਚਾਰਜ ਦੇ ਤੌਰ ਤੇ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਕੂਲੌਂਬ ਦੇ ਨਿਯਮ ਮੁਤਾਬਿਕ

ਦੋ ਪੋਆਇੰਟ ਚਾਰਜਾਂ ਦਰਮਿਆਨ ਪਰਸਪਰ ਕ੍ਰਿਆ ਦਾ ਫੋਰਸ ਚਾਰਜਾਂ ਦੇ ਮੁੱਲ ਦੇ ਗੁਣਨਫਲ ਦੇ ਸਿੱਧੇ ਤੌਰ ਤੇ ਅਨੁਪਾਤ ਵਿੱਚ (ਡਾਇਰੈਕਟਲੀ ਪਰੋਪੋਸ਼ਨਲ) ਹੁੰਦਾ ਹੈ ਅਤੇ ਉਹਨਾਂ ਦਰਮਿਆਨ ਦੂਰੀ ਦੇ ਉਲਟੇ ਅਨੁਪਾਤ ਵਿੱਚ (ਇਨਵਰਸਲੀ ਪਰੋਪੋਸ਼ਨਲ) ਹੁੰਦਾ ਹੈ। ਫੋਰਸ ਹਮੇਸ਼ਾਂ ਦੋਵੇਂ ਚਾਰਜਾਂ ਦੀ ਪੁਜੀਸ਼ਨ ਨੂੰ ਮਿਲਾਉਣ ਵਾਲੀ ਲਾਈਨ ਦੇ ਨਾਲ ਨਾਲ ਕ੍ਰਿਆ (ਐਕਟ) ਕਰਦਾ ਹੈ।

F ∝ (|ਕਿਆਊ-ਵੱਨ| ✕ |ਕਿਆਊ-ਟੂ|)/(r2) ਜਾਂ F = k (|ਕਿਆਊ-ਵੱਨ| ✕ |ਕਿਆਊ-ਟੂ|)/(r2)

  • ਜਿੱਥੇ k, ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕਸ ਫੋਰਸ ਕੌਂਸਟੈਂਟ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਜਿਸਦਾ ਮੁੱਲ ਚਾਰਜਾਂ ਨੂੰ ਵੱਖਰਾ ਕਰਨ ਵਾਲੇ ਮਾਧਿਅਮ (ਮੀਡੀਅਮ) ਦੀ ਫਿਤਰਤ ਉੱਤੇ ਅਤੇ ਯੂਨਿਟਾਂ ਦੇ ਸਿਸਟਮ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।
  • ਜਦੋਂ ਚਾਰਜ ਫਰੀ ਸਪੇਸ (ਹਵਾ/ਵੈਕੱਮ) ਵਿੱਚ ਸਥਿਤ ਹੁੰਦੇ ਹਨ, ਤਾਂ cgs ਸਿਸਟਮ ਵਿੱਚ ਇਸ ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕਸ ਫੋਰਸ ਕੌਂਸਟੈਂਟ ਦਾ ਮੁੱਲ k = 1 ਹੁੰਦਾ ਹੈ।
  • S I ਯੂਨਿਟਾਂ ਅੰਦਰ k = 9 ✕ 109 N m2 C-2 ਹੁੰਦਾ ਹੈ।
  • ਅਸੀਂ ਲਿਖਦੇ ਹਾਂ;
k = 1/(4πε₀)
  • ਇਸਤਰਾਂ

F = (|ਕਿਆਊ-ਵੱਨ| ✕ |ਕਿਆਊ-ਟੂ|)/( (4πε₀ r2)

ε₀ ਦੀਆਂ ਯੂਨਿਟਾਂ, ਡਾਇਮੈਨਸ਼ਨਾਂ ਅਤੇ ਮੁੱਲ

    • ਓਪਰੋਕਤ ਇਕੁਏਸ਼ਨ ਤੋਂ;

ε₀ = (|ਕਿਆਊ-ਵੱਨ| ✕ |ਕਿਆਊ-ਟੂ|)/( (4π F r2)

ਕਿਉਂਕਿ S I ਯੂਨਿਟਾਂ ਵਿੱਚ ਚਾਰਜ ਕੂਲੌਂਬ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਇਸਲਈ,

ਐਪਸਾਈਲਨ-ਨੌਟ ਦੀਆਂ ਯੂਨਿਟਾਂ = C2 N-1 m-2

    • ਐਪਸਾਈਲਨ-ਨੌਟ ਦੀਆਂ ਡਾਇਮੈਨਸ਼ਨਾਂ = [M-1 L-3 A2]
    • ਐਪਸਾਈਲਨ-ਨੌਟ ਦਾ ਮੁੱਲ = 1/(4π k) = 8.85 ✕ 10-12 C2 N-1 m-2

ਵੈਕਟਰ ਰੂਪ ਵਿੱਚ ਕੂਲੌਂਬ ਦਾ ਨਿਯਮ[ਸੋਧੋ]

ਜਿਵੇਂ ਅਸੀਂ ਪਹਿਲਾਂ ਪੜਿਆ ਕਿ ਕੁਲੌਂਬ ਦੇ ਨਿਯਮ ਮੁਤਾਬਿਕ, ਦੋ ਚਾਰਜਾਂ ਕਿਆਊ-ਵੱਨ ਅਤੇ ਕਿਆਊ-ਟੂ ਦਰਮਿਆਨ ਪਰਸਪਰ ਕ੍ਰਿਆ ਫੋਰਸ F ਉਹਨਾਂ ਦੇ ਚਾਰਜਾਂ ਦੇ ਗੁਣਨਫਲ ਦੇ ਡਾਇਰੈਕਟਲੀ ਪਰੋਪੋਸ਼ਨਲ ਅਤੇ ਉਹਨਾਂ ਦਰਮਿਆਨ ਡਿਸਟੈਂਸ r ਦੇ ਇਨਵਰਸਲੀ ਪ੍ਰੋਪੋਸ਼ਨਲ ਹੁੰਦਾ ਹੈ। ਯਾਨਿ ਕਿ,

ਕਿਉਂਕਿ ਫੋਰਸ ਇੱਕ ਵੈਕਟਰ ਹੁੰਦਾ ਹੈ, ਇਸਲਈ ਇਸਲਈ ਕੂਲੌਂਬ ਦੇ ਨਿਯਮ ਨੂੰ ਵੈਕਟਰ ਚਿੰਨਾਂ ਵਿੱਚ ਲਿਖਣਾ ਜਿਆਦਾ ਠੀਕ ਹੈ ਜੋ ਇਸਤਰਾਂ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ;

ਇੱਥੇ

  • ke, (ke = 8,98,75,51,787.3682 N m2 C−2) ਕੁਲੌਂਬ ਕੌਂਸਟੈਂਟ ਹੈ,
  • q1 ਅਤੇ q2 ਚਾਰਜਾਂ ਦੇ ਚਿੰਨ-ਸਮੇਤ ਮੁੱਲ ਹਨ,
  • ਸਕੇਲਰ r ਚਾਰਜਾਂ ਦਰਮਿਆਨ ਡਿਸਟੈਂਸ ਹੈ,
  • ਵੈਕਟਰ r21 = r1r2 ਚਾਰਜਾਂ ਦਰਮਿਆਨ ਵੈਕਟਰਾਤਮਿਕ ਡਿਸਟੈਂਸ (ਦੂਰੀ) ਹੈ, ਅਤੇ
  • 21 = r21/|r21| (q2 ਤੋਂ q1 ਤੱਕ ਇਸ਼ਾਰਾ ਕਰਨ ਵਾਲਾ ਇੱਕ ਯੂਨਿਟ ਵੈਕਟਰ) ।
  • ਇਕੁਏਸ਼ਨ ਦੀ ਵੈਕਟਰ ਕਿਸਮ, q2 ਦੁਆਰਾ q1 ਉੱਤੇ ਲਾਗੂ ਕੀਤਾ ਗਿਆ ਫੋਰਸ F1 ਕੈਲੁਕੁਲੇਟ ਕਰਦੀ ਹੈ।
  • ਜੇਕਰ r12 ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਸਦੀ ਜਗਹ q2 ਉੱਤੇ ਅਸਰ ਖੋਜਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਸਨੂੰ ਨਿਊਟਨ ਦੇ ਤੀਜੇ ਨਿਯਮ ਨਾਲ ਵੀ ਕੈਲਕੁਲੇਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: F2 = −F1

ਨੋਟਸ[ਸੋਧੋ]

ke = H/m is not correct it must be F/m

ਹਵਾਲੇ[ਸੋਧੋ]

ਬਾਹਰੀ ਲਿੰਕ[ਸੋਧੋ]


[[Category:ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕਸ] [[Category:ਵਿਗਿਆਨਿਕ ਨਿਯਮ]