ਨਾਪ ਸਮੱਸਿਆ
ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅੰਦਰ ਨਾਪ ਸਮੱਸਿਆ ਦੀ ਸਮੱਸਿਆ ਇਸ ਗੱਲ ਨਾਲ ਸਬੰਧਤ ਹੈ ਕਿ ਵੇਵ ਫੰਕਸ਼ਨ ਕਿਵੇਂ ਟੁੱਟਦਾ ਹੈ (ਜਾਂ ਟੁੱਟਦਾ ਵੀ ਹੈ ਕਿ ਨਹੀਂ)। ਇਸ ਪ੍ਰਕ੍ਰਿਆ ਨੂੰ ਸਿੱਧੇ ਤੌਰ 'ਤੇ ਨਿਰੀਖਣ ਨਾ ਕੀਤੇ ਜਾ ਸਕਣ ਦੀ ਅਸਮਰੱਥਾ ਨੇ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੀਆਂ ਵੱਖਰੀਆਂ ਵਿਆਖਿਆਵਾਂ ਨੂੰ ਜਨਮ ਦਿੱਤਾ ਹੈ, ਅਤੇ ਸਵਾਲਾਂ ਦੇ ਇੱਕ ਪ੍ਰਮੁੱਖ ਸੈੱਟ ਦੀ ਰੂਪਰੇਖਾ ਤਿਆਰ ਕੀਤੀ ਹੈ ਜਿਸਦਾ ਹਰੇਕ ਵਿਆਖਿਆ ਨੂੰ ਜਰੂਰ ਜਵਾਬ ਦੇਣਾ ਚਾਹੀਦਾ ਹੈ। ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅੰਦਰ ਵੇਵ ਫੰਕਸ਼ਨ, ਵੱਖਰੀਆਂ ਅਵਸਥਾਵਾਂ ਦੀ ਇੱਕ ਰੇਖਿਕ ਸੁਪਰਪੁਜੀਸ਼ਨ ਦੇ ਤੌਰ 'ਤੇ ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ ਮੁਤਾਬਕ ਨਿਰਧਾਰਤਮਿਕ ਅੰਦਾਜ਼ ਵਿੱਚ ਉਤਪੰਨ ਹੁੰਦਾ ਹੈ, ਪਰ ਵਾਸਤਵਿਕ ਨਾਪ ਹਮੇਸ਼ਾ ਹੀ ਭੌਤਿਕੀ ਸਿਸਟਮ ਨੂੰ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਅਵਸਥਾ ਅੰਦਰ ਪਾਉਂਦੇ ਹਨ। ਕੋਈ ਵੀ ਭਵਿੱਖਤ ਉਤਪਤੀ ਓਸ ਅਵਸਥਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ ਜਿਸ ਅਵਸਥਾ ਵਿੱਚ ਸਿਸਟਮ ਨੂੰ ਉਦੋਂ ਖੋਜਿਆ ਗਿਆ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਨਾਪ ਲਿਆ ਗਿਆ ਹੁੰਦਾ ਹੈ, ਜਿਸਦਾ ਅਰਥ ਹੈ ਕਿ ਨਾਪ ਨੇ ਸਿਸਟਮ ਨੂੰ ਕੁੱਝ ਅਜਿਹਾ ਕਰ ਦਿੱਤਾ ਹੁੰਦਾ ਹੈ ਜੋ ਸਪਸ਼ਟ ਰੂਪ ਵਿੱਚ ਸ਼੍ਰੋਡਿੰਜਰ ਉਤਪਤੀ ਦਾ ਇੱਕ ਨਤੀਜਾ ਨਹੀਂ ਹੁੰਦਾ।
ਮਸਲਿਆਂ ਨੂੰ ਵੱਖਰੇ ਤਰੀਕੇ ਨਾਲ ਦਰਸਾਉਣ ਲਈ (ਸਟੀਵਨ ਵੇਨਬਰਗ[1][2] ਦੀ ਸੰਖੇਪ ਵਿਆਖਿਆ ਕਰਨ ਲਈ), ਸ਼੍ਰੋਡਿੰਜਰ ਵੇਵ ਇਕੁਏਸ਼ਨ ਕਿਸੇ ਹੋਰ ਬਾਦ ਦੇ ਵਕਤ ਉੱਤੇ ਵੇਵ ਫੰਕਸ਼ਨ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਦੀ ਹੈ। ਜੇਕਰ ਔਬਜ਼ਰਵਰ (ਨਿਰੀਖਕ) ਅਤੇ ਉਹਨਾਂ ਦੇ ਨਾਪਣ ਵਾਲ਼ੇ ਯੰਤਰ ਆਪਣੇ ਆਪ ਵਿੱਚ ਕਿਸੇ ਨਿਰਧਾਰਤਮਿਕ ਵੇਵ ਫੰਕਸ਼ਨ ਰਾਹੀਂ ਦਰਸਾਏ ਜਾਂਦੇ ਹੋਣ, ਤਾਂ ਅਸੀਂ ਨਾਪਾਂ ਲਈ ਸ਼ੁੱਧ ਨਤੀਜਿਆਂ ਦਾ ਅਨੁਮਾਨ ਕਿਉਂ ਨਹੀਂ ਲਗਾ ਪਾਉਂਦੇ, ਸਿਰਫ ਪ੍ਰੋਬੇਬਿਲਟੀਆਂ ਹੀ ਕਿਉਂ ਅਨੁਮਾਨਿਤ ਕਰ ਸਕਦੇ ਹਾਂ? ਇੱਕ ਸਰਵ ਸਧਾਰਨ ਸਵਾਲ ਦੇ ਰੂਪ ਵਿੱਚ ਕਹੀਏ ਤਾਂ: ਕੁਆਂਟਮ ਅਤੇ ਕਲਾਸੀਕਲ ਯਥਾਰਤਿਕਤਾ (ਵਾਸਤਵਿਕਤਾ) ਦਰਮਿਆਨ ਇੱਕ ਮੇਲਜੋਲ ਕਿਵੇਂ ਸਥਾਪਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ?
ਸ਼੍ਰੋਡਿੰਜਰ ਦੀ ਬਿੱਲੀ
[ਸੋਧੋ]ਸਭ ਤੋਂ ਚੰਗੀ ਤਰਾਂ ਜਾਣੀ ਪਛਾਣੀ ਉਦਾਹਰਨ ਸ਼੍ਰੋਡਿੰਜਰਜ਼ ਕੈਟ ਦੀ ਪਹੇਲੀ ਹੈ। ਇੱਕ ਬਿੱਲੀ ਨੂੰ ਮਾਰਨ ਲਈ ਇੱਕ ਮਕੈਨਿਜ਼ਮ ਦਾ ਪ੍ਰਬੰਧ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜੇਕਰ ਕੋਈ ਕੁਆਂਟਮ ਘਟਨਾ ਜਿਵੇਂ ਕਿਸੇ ਰੇਡੀਓਐਕਟਿਵ ਪ੍ਰਮਾਣੂ ਦਾ ਵਿਕੀਰਣ ਵਰਗੀ ਘਟਨਾ, ਵਾਪਰੇ। ਇਸ ਤਰ੍ਹਾਂ ਇੱਕ ਵਿਸ਼ਾਲ ਪੈਮਾਨੇ ਦੀ ਵਸਤੂ, ਬਿੱਲੀ, ਦੀ ਕਿਸਮਤ ਕਿਸੇ ਕੁਆਂਟਮ ਵਸਤੂ, ਪ੍ਰਮਾਣੂ ਦੀ ਕਿਸਮਤ ਨਾਲ ਇੰਟੈਗਲਡ ਹੋ ਜਾਂਦੀ ਹੈ। ਨਿਰੀਖਣ ਤੋਂ ਪਹਿਲਾਂ, ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ ਅਨੁਸਾਰ, ਬਿੱਲੀ, ਸਪਸ਼ਟ ਤੌਰ 'ਤੇ ਅਜਿਹੀਆਂ ਅਵਸਥਾਵਾਂ ਦੇ ਇੱਕ ਰੇਖਿਕ ਮੇਲ਼ ਵਿੱਚ ਉਤਪੰਨ ਹੋ ਰਹੀ ਹੁੰਦੀ ਹੈ ਜਿਹਨਾਂ ਨੂੰ ਇੱਕ ਜੀਵਤ ਬਿੱਲੀ ਦੇ ਤੌਰ 'ਤੇ ਵਿਸ਼ੇਸ਼ ਤੌਰ 'ਤੇ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਇੱਕ ਮਰੀ ਹੋਈ ਬਿੱਲੀ ਦੇ ਤੌਰ 'ਤੇ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹਨਾਂ ਸੰਭਾਵਨਾਵਾਂ ਵਿੱਚੋਂ ਹਰੇਕ ਸੰਭਾਵਨਾ ਨਾਲ ਇੱਕ ਖਾਸ ਗੈਰ-ਜ਼ੀਰੋ ਪ੍ਰੋਬੇਬਿਲਟੀ ਐਂਪਲੀਟਿਊਡ ਜੁੜਿਆ ਹੁੰਦਾ ਹੈ; ਕਿ ਬਿੱਲੀ ਕਿਸੇ ਕਿਸਮ ਦੀ ਕੁਆਂਟਮ ਸੁਪਰਪੁਜੀਸ਼ਨ ਕਹੀ ਜਾਣ ਵਾਲ਼ੀ ਇੱਕ ਮੇਲ ਦੀ ਅਵਸਥਾ ਵਿੱਚ ਹੁੰਦੀ ਲਗਦੀ ਹੈ। ਫੇਰ ਵੀ, ਬਿੱਲੀ ਦਾ ਇੱਕ ਇਕਲੌਤਾ, ਖਾਸ ਨਿਰੀਖਣ ਪ੍ਰੋਬੇਬਿਲਟੀਆਂ ਨੂੰ ਨਹੀਂ ਨਾਪਦਾ: ਇਹ ਹਮੇਸ਼ਾ ਹੀ ਜਾਂ ਤਾਂ ਇੱਕ ਜੀਵਤ ਬਿੱਲੀ ਪਾਉਂਦਾ ਹੈ, ਜਾਂ ਇੱਕ ਮਰੀ ਹੋਈ ਬਿੱਲੀ ਖੋਜਦਾ ਹੈ। ਨਾਪ ਤੋਂ ਪਿੱਛੋਂ ਬਿੱਲੀ ਨਿਸ਼ਚਿਤ ਤੌਰ 'ਤੇ ਜੀਵਤ ਜਾਂ ਮਰੀ ਹੋਈ ਹੁੰਦੀ ਹੈ। ਸਵਾਲ ਇਹ ਹੈ ਕਿ: ਪ੍ਰੋਬੇਬਿਲਟੀਆਂ ਇੱਕ ਵਾਸਤਵ, ਤਿੱਖੇ ਤੌਰ 'ਤੇ ਚੰਗੀ ਤਰਾਂ ਪਰਿਭਾਸ਼ਿਤ ਨਤੀਜੇ ਵਿੱਚ ਕਿਵੇਂ ਤਬਦੀਲ ਹੋ ਜਾਂਦੀਆਂ ਹਨ?
ਵਿਆਖਿਆਵਾਂ
[ਸੋਧੋ]ਕਈ-ਸੰਸਾਰ ਵਿਆਖਿਆ
[ਸੋਧੋ]ਹੂਗ ਐਵਰੈੱਟ ਦੀ ਮੈਨੀ-ਵਰਲਡਜ਼ ਇੰਟ੍ਰਪ੍ਰੈਟੇਸ਼ਨ (ਕਈ-ਸੰਸਾਰ ਵਿਆਖਿਆ) ਇਹ ਸੁਝਾਅ ਕੇ ਸਮੱਸਿਆ ਨੂੰ ਹੱਲ ਕਰਨ ਦਾ ਯਤਨ ਕਰਦੀ ਹੈ ਕਿ ਸਿਰਫ ਇੱਕੋ ਵੇਵ ਫੰਕਸ਼ਨ ਹੁੰਦਾ ਹੈ, ਸਮਸਤ ਬ੍ਰਹਿਮੰਡ ਦੀ ਸੁਪਰਪੁਜੀਸ਼ਨ, ਅਤੇ ਇਹ ਕਦੇ ਵੀ ਨਹੀਂ ਟੁੱਟਦਾ- ਇਸਲਈ ਕੋਈ ਨਾਪ ਸਮੱਸਿਆ ਹੁੰਦੀ ਹੀ ਨਹੀਂ। ਇਸਦੀ ਵਜਾਏ, ਨਾਪ ਦਾ ਕਾਰਜ ਸਧਾਰਨ ਰੂਪ ਵਿੱਚ ਕੁਆਂਟਮ ਇਕਾਈਆਂ ਦਰਮਿਆਨ ਇੱਕ ਪਰਸਪਰ ਕ੍ਰਿਆ ਹੀ ਹੁੰਦਾ ਹੈ, ਯਾਨਿ ਕਿ, ਔਬਜ਼ਰਵਰ, ਨਾਪ ਯੰਤਰ, ਇਲੈਕਟ੍ਰੌਨ/ਪੌਜ਼ੀਟ੍ਰੌਨ ਆਦਿ ਦਰਮਿਆਨ, ਜੋ ਇੱਕੋ ਇਕਲੌਤੀ ਵਿਸ਼ਾਲ ਇਕਾਈ ਰਚਣ ਲਈ ਇੰਟੈਂਗਲ ਹੁੰਦਾ ਹੈ, ਜਿਵੇਂ ਉਦਾਹਰਨ ਦੇ ਤੌਰ 'ਤੇ, ਜੀਵਤ-ਬਿੱਲੀ/ਖੁਸ਼-ਵਿਗਿਆਨਿਕ। ਐਵਰੈੱਟ ਨੇ ਉਹ ਤਰੀਕਾ ਵੀ ਸਾਬਤ ਕਰਨ ਦਾ ਯਤਨ ਵੀ ਕੀਤਾ ਕਿ ਨਾਪਾਂ ਅੰਦਰ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੀ ਸ਼ਾਇਦਾਤਮਿਕ ਫਿਤਰਤ ਦਿਸਦੀ ਹੋ ਸਕਦੀ ਹੈ; ਜਿਸਦੇ ਕੰਮ ਨੂੰ ਬਾਦ ਵਿੱਚ ਬਰੇਸਿ ਡਿਵਿੱਟ ਦੁਆਰਾ ਵਧਾਇਆ ਗਿਆ।
ਡੀ-ਬ੍ਰੋਗਲਿ-ਬੋਹਮ ਥਿਊਰੀ
[ਸੋਧੋ]ਡੀ-ਬ੍ਰੋਗਲਿ-ਬੋਹਮ ਥਿਊਰੀ ਬਿਲਕੁਲ ਵੱਖਰੇ ਤਰੀਕੇ ਨਾਲ ਨਾਪ ਸਮੱਸਿਆ ਹੱਲ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੀ ਹੈ: ਸਿਸਟਮ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲ਼ੀ ਜਾਣਕਾਰੀ ਨਾ ਕੇਵਲ ਵੇਵ ਫੰਕਸ਼ਨ ਹੀ ਰੱਖਦੀ ਹੈ, ਸਗੋਂ ਕਣ (ਕਣਾਂ) ਦੀ ਪੁਜੀਸ਼ਨ ਦੱਸਣ ਵਾਲ਼ਾ ਪੂਰਕ (ਸਪਲੀਮੈਂਟਰੀ) ਆਂਕੜਾ (ਡੈਟਾ) (ਇੱਕ ਵਕਰਿਤ ਪਥ, ਟ੍ਰੈਜੈਕਟਰੀ) ਵੀ ਰੱਖਦੀ ਹੁੰਦੀ ਹੈ। ਵੇਵ ਫੰਕਸ਼ਨ ਦੀ ਭੂਮਿਕਾ ਕਣਾਂ ਵਾਸਤੇ ਵਿਲੌਸਿਟੀ ਫੀਲਡ ਪੈਦਾ ਕਰਨਾ ਹੁੰਦਾ ਹੈ। ਇਹ ਵਿਲੌਸਿਟੀਆਂ ਕੁੱਝ ਇਸ ਤਰ੍ਹਾਂ ਹੁੰਦੀਆਂ ਹਨ ਕਿ ਕਣ ਵਾਸਤੇ ਪ੍ਰੋਬੇਬਿਲਟੀ ਵਿਸਥਾਰ ਵੰਡ, ਪ੍ਰੰਪਰਿਕ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੀਆਂ ਭਵਿੱਖ ਬਾਣੀਆਂ ਨਾਲ ਮੇਲ ਖਾਂਦੀ ਹੁੰਦੀ ਹੈ। ਡੀ ਬ੍ਰੋਗਲਿ-ਬੋਹਮ ਥਿਊਰੀ ਮੁਤਾਬਿਕ, ਕਿਸੇ ਨਾਪ ਪ੍ਰਕ੍ਰਿਆ ਦੌਰਾਨ ਵਾਤਾਵਰਨ ਨਾਲ ਪਰਸਪਰ ਕ੍ਰਿਆ ਬਣਤਰ ਸਪੇਸ ਅੰਦਰ ਵੇਵ ਪੈਕਟਾਂ ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿੰਦੀ ਹੈ, ਜੋ ਉਹ ਜਗਹ ਹੁੰਦੀ ਹੈ ਜਿੱਥੋਂ ਸਪਸ਼ਟ ਵੇਵ ਫੰਕਸ਼ਨ ਕੋਲੈਪਸ ਆਉਂਦਾ ਹੈ ਭਾਵੇਂ ਕੋਈ ਵਾਸਤਵਿਕ ਕੋਲੈਪਸ ਹੋਇਆ ਹੀ ਨਹੀਂ ਹੁੰਦਾ ਹੋਵੇ।
ਕੁਆਂਟਮ ਡਿਕੋਹਰੰਸ
[ਸੋਧੋ]ਐਰਿਚ ਜੂਸ ਅਤੇ ਹੇਇਨਜ਼-ਡੀਟਰ ਜ਼ੇਹ ਦਾਅਵਾ ਕਰਦੇ ਹਨ ਕਿ ਕੁਆਂਟਮ ਡਿਕੋਹਰੰਸ ਦਾ ਵਰਤਾਰਾ, ਜੋ 1980ਵੇਂ ਦਹਾਕੇ ਵਿੱਚ ਠੋਸ ਅਧਾਰ ਉੱਤੇ ਰੱਖਿਆ ਗਿਆ ਸੀ, ਸਮੱਸਿਆ ਦਾ ਨਿਵਾਰਣ ਕਰਦਾ ਹੈ।[3] ਵਿਚਾਰ ਇਹ ਹੈ ਕਿ ਵਾਤਾਵਰਨ ਅਸਥੂਲ ਵਸਤੂਆਂ ਦੀ ਕਲਾਸੀਕਲ ਦਿੱਖ ਪੈਦਾ ਕਰਦਾ ਹੈ। ਜ਼ੇਹ ਹੋਰ ਅੱਗੇ ਦਾਅਵਾ ਕਰਦਾ ਹੈ ਕਿ ਡਿਕੋਹਰੰਸ ਕੁਆਂਟਮ ਸੂਖਮ ਸੰਸਾਰ ਅਤੇ ਕਲਾਸੀਕਲ ਸਮਝ ਲਾਗੂ ਹੋਣ ਵਾਲ਼ੇ ਸੰਸਾਰ ਦਰਮਿਆਨ ਇੱਕ ਧੁੰਦਲ਼ੀ ਹੱਦ ਨੂੰ ਪਛਾਣਨਾ ਸੰਭਵ ਬਣਾਉਂਦੀ ਹੈ। ਕੁਆਂਟਮ ਡਿਕੋਹਰੰਸ ਮੈਨੀ-ਵਰਲਡ ਵਿਆਖਿਆ ਦੇ ਸੰਦਰਭ ਵਿੱਚ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤੀ ਗਈ ਸੀ, ਪਰ ਇਹ ਅਨੁਕੂਲ ਇਤਿਹਾਸਾਂ ਉੱਤੇ ਅਧਾਰਿਤ ਕੌਪਨਹੀਗਨ ਵਿਆਖਿਆ ਦੀਆਂ ਕੁੱਝ ਅਜੋਕੀਆਂ ਤਾਜ਼ਾ ਸਥਿਤੀਆਂ ਦਾ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਅੰਗ ਵੀ ਬਣ ਗਈ ਹੈ। ਕੁਆਂਟਮ ਡਿਕੋਹਰੰਸ ਵੇਵ ਫੰਕਸ਼ਨ ਟੁੱਟਣ ਦੀ ਵਾਸਤਵਿਕ ਪ੍ਰਕ੍ਰਿਆ ਨੂੰ ਬਿਆਨ ਨਹੀਂ ਕਰਦੀ, ਪਰ ਇਹ ਕੁਆਂਟਮ ਸ਼ਾਇਦਤਾਵਾਂ (ਜੋ ਇੰਟਰਫੇਰੈਂਸ ਪ੍ਰਭਾਵ ਦਿਖਾਉਂਦੀਆਂ ਹਨ) ਦਾ ਸਧਾਰਨ ਕਲਾਸੀਕਲ ਸ਼ਾਇਦਤਾਵਾਂ (ਪ੍ਰੋਬੇਬਿਲਟੀਆਂ) ਵਿੱਚ ਪਰਿਵਰਤਨ ਸਮਝਾਉਂਦੀ ਹੈ। ਦੇਖੋ, ਉਦਾਹਰਨ ਦੇ ਤੌਰ 'ਤੇ, ਜ਼ੁਰੇਕ[4] ਜ਼ੇਹ[5] ਅਤੇ ਸ਼ਲੌਸ਼ਹਰ[6]।
ਤਾਜ਼ਾ ਸਥਿਤੀ ਹੌਲੀ ਹੌਲੀ ਸਪਸ਼ਟ ਹੁੰਦੀ ਜਾ ਰਹੀ ਹੈ, ਜਿਵੇਂ ਕਿ ਸ਼ਲੌਸ਼ਹਰ ਦੁਆਰਾ ਇੱਕ ਤਾਜ਼ਾ ਪਰਚੇ ਵਿੱਚ ਕਿਹਾ ਗਿਆ ਹੈ ਜੋ ਇਸ ਪ੍ਰਕਾਰ ਹੈ;
ਸ਼ਾਇਦਤਾਵਾਂ ਦੇ ਅਰਥ ਨੂੰ ਸਪਸ਼ਟ ਕਰਨ ਦੇ ਚੱਕਰ ਵਿੱਚ ਬੌਰਨ ਰੂਲ ਉੱਤੇ ਪਹੁੰਚਣ ਵਾਸਤੇ ਬੀਤੇ ਸਮੇਂ ਵਿੱਚ ਕਈ ਡਿਕੋਹਰੰਸ-ਅਸਬੰਧਤ ਪ੍ਰਸਤਾਵ ਅੱਗੇ ਰੱਖੇ ਗਏ ਹਨ … ਇਹ ਕਹਿਣਾ ਜਾਇਜ਼ ਹੈ ਕਿ ਕੋਈ ਵੀ ਫੈਸਲਾਤਮਿਕ ਨਤੀਜਾ ਇਹਨਾਂ ਵਿਓਂਤਬੰਦੀਆਂ ਦੀ ਸਫਲਤਾ ਦੇ ਤੌਰ 'ਤੇ ਪਹੁੰਚਦਾ ਦਿਖਾਈ ਨਹੀਂ ਦਿੰਦਾ। …
ਜਿਵੇਂ ਇਹ ਗੱਲ ਸਭ ਚੰਗੀ ਤਰਾਂ ਜਾਣਦੇ ਹਨ ਕਿ [ਬੋਹਮ ਦੁਆਰਾ ਕਈ ਪੇਪਰ ਕਲਾਸੀਕਲ ਧਾਰਨਾਵਾਂ ਦੇ ਬੁਨਿਆਦੀ ਰੋਲ ਉੱਤੇ ਜੋਰ ਦਿੰਦੇ ਹਨ]। ਵਧ ਰਹੀ ਵਿਸ਼ਾਲ ਲੰਬਾਈ ਵਾਲ਼ੇ ਪੈਮਾਨਿਆਂ ਉੱਤੇ ਸੂਖਮ ਤੌਰ 'ਤੇ ਵੱਖਰੀਆਂ ਅਵਸਥਾਵਾਂ ਦੀਆਂ ਸੁਪਰਪੁਜੀਸ਼ਨਾਂ ਵਾਸਤੇ ਪ੍ਰਯੋਗਿਕ ਸਬੂਤ ਅਜਿਹੇ ਅਨੁਛੇਦ ਦਾ ਵਿਰੋਧ ਕਰਦੇ ਹਨ। ਸੁਪਰਪੁਜੀਸ਼ਨਾਂ ਉੱਤਮ ਦਿਸਦੀਆਂ ਹਨ ਅਤੇ ਵਿਅਕਤੀਗਤ ਹੋਂਦ ਰੱਖਣ ਵਾਲ਼ੀਆਂ ਅਵਸਥਾਵਾਂ, ਅਕਸਰ ਬਗੈਰ ਕਿਸੇ ਕਲਾਸੀਕਲ ਵਿਰੋਧੀ ਸਾਥੀ ਦੇ ਦਿਸਦੀਆਂ ਹਨ। ਸਿਰਫ ਸਿਸਟਮਾਂ ਦਰਮਿਆਨ ਭੌਤਿਕੀ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਹੀ ਫੇਰ ਕਿਸੇ ਖਾਸ ਸੰਰਚਨਾ ਨੂੰ ਕਲਾਸੀਕਲ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਹਰੇਕ ਖਾਸ ਸਿਸਟਮ ਦੇ ਨਜ਼ਰੀਏ ਤੋਂ ਨਿਰਧਾਰਿਤ ਕਰਦੀਆਂ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਕਲਾਸੀਕਲ ਧਾਰਨਾਵਾਂ ਨੂੰ ਕਿਸੇ ਸਾਪੇਖਿਕ-ਅਵਸਥਾ ਬੁੱਧੀ ਮੁਤਾਬਿਕ ਸਥਾਨਿਕ ਤੌਰ 'ਤੇ ਉਤਪੰਨ ਹੁੰਦੀਆਂ ਸਮਝਿਆ ਜਾਣਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਭੌਤਿਕੀ ਥਿਊਰੀ ਅੰਦਰ ਕਿਸੇ ਬੁਨਿਆਦੀ ਭੂਮਿਕਾ ਦਾ ਹੋਰ ਜਿਆਦਾ ਦਾਅਵਾ ਨਹੀਂ ਕਰਨਾ ਚਾਹੀਦਾ।
ਵਿਸ਼ਾਤਮਿਕ ਕੌਲੈਪਸ ਮਾਡਲ
[ਸੋਧੋ]ਇੱਕ ਚੌਥਾ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਵਿਸ਼ਾਤਮਿਕ ਕੌਲੈਪਸ ਮਾਡਲਾਂ ਰਾਹੀਂ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਅਜਿਹੇ ਮਾਡਲਾਂ ਅੰਦਰ, ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ ਨੂੰ ਸੁਧਾਰਿਆ ਗਿਆ ਹੈ ਅਤੇ ਗੈਰ-ਰੇਖਿਕ ਰਕਮਾਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀਆਂ ਹਨ। ਇਹ ਗੈਰ-ਰੇਖਿਕ ਸੁਧਾਰ ਉੱਘੜ ਦੁੱਘੜ ਨਿਰਧਾਰਿਤ ਕੀਤੀ ਫਿਤਰਤ ਵਾਲ਼ੇ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇੱਕ ਅਜਿਹੇ ਵਰਤਾਓ ਵੱਲ ਲਿਜਾਂਦੇ ਹਨ ਜਿਸ ਲਈ ਇਲੈਕਟ੍ਰੌਨਾਂ ਜਾਂ ਐਟਮਾਂ ਵਰਗੀਆਂ ਕੁਆਂਟਮ ਚੀਜ਼ਾਂ ਆਮ ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ ਦੁਆਰਾ ਦਿੱਤੀਆਂ ਜਾਣ ਵਾਲ਼ੀਆਂ ਚੀਜ਼ਾਂ ਤੋਂ ਨਾ-ਨਾਪਣਯੋਗ ਤੋਰ ਤੇ ਨਜ਼ਦੀਕ ਹੁੰਦੀਆਂ ਹਨ। ਫੇਰ ਵੀ ਅਸਥੂਲ ਚੀਜ਼ਾਂ ਵਾਸਤੇ ਗੈਰ-ਰੇਖਿਕ ਸੁਧਾਰ ਮਹੱਤਵਪੂਰਨ ਬਣ ਜਾਂਦੇ ਹਨ ਅਤੇ ਵੇਵ ਫੰਕਸ਼ਨ ਦੇ ਟੁੱਟਣ ਵਿੱਚ ਦਖਲ ਅੰਦਾਜੀ ਕਰਦੇ ਹਨ।
ਵਿਸ਼ਾਤਮਿਕ ਕੌਲੈਪਸ ਮਾਡਲ ਪ੍ਰਭਾਵੀ ਥਿਊਰੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਮਨਚਾਹਿਆ ਸੁਧਾਰ ਕਿਸੇ ਬਾਹਰੀ ਗੈਰ-ਕੁਆਂਟਮ ਫੀਲਡ ਤੋਂ ਬਣੇ ਸੋਚੇ ਜਾਂਦੇ ਹਨ, ਪਰ ਇਸ ਫੀਲਡ ਦੀ ਫਿਤਰਤ ਅਗਿਆਤ ਹੈ। ਇੱਕ ਸੰਭਵ ਉਮੀਦਵਾਰ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪਰਸਪਰ ਕ੍ਰਿਆ ਹੈ ਜਿਵੇਂ ਡਿਓਸੀ ਅਤੇ ਪੈਨਰੋਜ਼ ਦੇ ਮਾਡਲਾਂ ਵਿੱਚ ਹੈ। ਵਿਸ਼ਾਤਮਿਕ ਕੋਲੈਪਸ ਮਾਡਲਾਂ ਦੀ ਹੋਰ ਦ੍ਰਿਸ਼ਟੀਕੋਣਾਂ ਪ੍ਰਤਿ ਤੁਲਨਾ ਵਿੱਚ ਮੁੱਖ ਅੰਤਰ ਇਹ ਹੈ ਕਿ ਇਹ ਝੂਠੇ ਹੋਣ ਯੋਗ ਅਨੁਮਾਨ ਲਗਾਉਂਦੇ ਹਨ ਜੋ ਮਿਆਰੀ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਤੋਂ ਵੱਖਰੇ ਹਨ। ਪ੍ਰਯੋਗ ਪਹਿਲਾਂ ਹੀ ਕਸੌਟੀ ਪ੍ਰਣਾਲੀ ਦੇ ਨੇੜੇ ਪਹੁੰਚ ਰਹੇ ਹਨ ਜਿੱਥੇ ਇਹਨਾਂ ਅਨੁਮਾਨਾਂ ਨੂੰ ਪਰਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
ਛੁਪੇ-ਨਾਪ ਵਾਲੀ ਵਿਆਖਿਆ
[ਸੋਧੋ]ਨਾਪ ਸਮੱਸਿਆ ਪ੍ਰਤਿ ਇੱਕ ਦਿਲਚਸਪ ਹੱਲ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੀ ਛੁਪੇ-ਨਾਪਾਂ ਵਾਲੀ ਵਿਆਖਿਆ ਦੁਆਰਾ ਵੀ ਮੁਹੱਈਆ ਕਰਵਾਇਆ ਗਿਆ ਹੈ। ਇਸ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਦੇ ਅਧਾਰ ਉੱਤੇ ਪਰਿਕਲਪਨਾ ਇਹ ਹੈ ਕਿ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਕੁਆਂਟਮ ਨਾਪ ਵਿੱਚ ਓਸ ਜਾਣਕਾਰੀ ਦੀ ਕਮੀ ਦੀ ਹਾਲਤ ਹੁੰਦੀ ਹੈ ਜਿਸ ਬਾਬਤ ਨਾਪੀ ਗਈ ਇਕਾਈ ਅਤੇ ਨਾਪਣ ਵਾਲੇ ਯੰਤਰ ਦਰਮਿਆਨ ਪ੍ਰਯੋਗ ਦੀ ਹਰੇਕ ਸ਼ੁਰੂਆਤ ਉੱਤੇ ਪਰਸਪਰ ਕ੍ਰਿਆ ਦਾ ਵਾਸਤਵੀਕਰਨ ਹੁੰਦਾ ਹੈ। ਫੇਰ ਇਹ ਸਾਬਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਇਹਨਾਂ ਸਾਰੀਆਂ ਸੰਭਵ ਨਾਪ-ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਉੱਪਰ ਇੱਕ ਇੱਕਸਾਰ ਔਸਤ ਨੂੰ ਲੈ ਕੇ ਬੌਰਨ ਰੂਲ ਦੀ ਵਿਓਂਤਬੰਦੀ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।
ਇਹ ਵੀ ਦੇਖੋ
[ਸੋਧੋ]- ਸ਼ੁੱਧ ਵਕਤ ਅਤੇ ਸਪੇਸ
- ਬੌਰਨ ਰੂਲ
- ਨਿਰਮਾਤਾ ਥਿਊਰੀ
- EPR ਪਹੇਲੀ
- ਘਿਰਾਡੀ-ਰਿਮਿਨੀ-ਵੈਬਰ ਥਿਊਰੀ
- ਛੁਪੇ-ਨਾਪ ਵਿਆਖਿਆ
- ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅੰਦਰ ਨਾਪ
- ਵਿਸ਼ਾਤਮਿਕ ਕੌਲੈਪਸ ਥਿਊਰੀ
- ਔਬਜ਼ਰਵਰ (ਕੁਆਂਟਮ ਭੌਤਿਕ ਵਿਗਿਆਨ)
- ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੀ ਫਿਲਾਸਫੀ
- ਕੁਆਂਟਮ ਡਿਕੋਹਰੰਸ
- ਕੁਆਂਟਮ ਸੂਡੋ-ਟੈਲੀਪੈਥੀ
- ਕੁਆਂਟਮ ਜ਼ੀਨੋ ਇੱਫੈਕਟ
- ਵੇਵ ਫੰਕਸ਼ਨ ਕੌਲੈਪਸ
ਹਵਾਲੇ ਅਤੇ ਨੋਟਸ
[ਸੋਧੋ]- ↑ Nakli itihaas jo likheya geya hai kade na vaapriya jo ohna de base te, saade te saada itihaas bna ke ehna ne thop dittiyan. anglo sikh war te ek c te 3-4 jagaha te kiwe chal rahi c ikko war utto saal 1848 jdo angrej sara punjab 1845 ch apne under kar chukke c te oh 1848 ch kihna nal jang ladd rahe c. Script error: The function "citation198.168.27.221 14:54, 13 ਦਸੰਬਰ 2024 (UTC)'"`UNIQ--ref-0000000C-QINU`"'</ref>" does not exist.
- ↑ Steven Weinberg: Einstein's Mistakes in Physics Today (2005); see subsection "Contra quantum mechanics"
- ↑ Joos, E., and H. D. Zeh, "The emergence of classical properties through interaction with the environment" (1985), Z. Phys. B 59, 223.
- ↑ ਹਵਾਲੇ ਵਿੱਚ ਗ਼ਲਤੀ:Invalid
<ref>
tag; no text was provided for refs namedZurek
- ↑ ਹਵਾਲੇ ਵਿੱਚ ਗ਼ਲਤੀ:Invalid
<ref>
tag; no text was provided for refs namedZeh
- ↑ Maximilian Schlosshauer (2005). "Decoherence, the measurement problem, and interpretations of quantum mechanics". Rev. Mod. Phys. 76 (4): 1267–1305. arXiv:quant-ph/0312059. Bibcode:2004RvMP...76.1267S. doi:10.1103/RevModPhys.76.1267.
<ref>
tag defined in <references>
has no name attribute.ਹੋਰ ਅੱਗੇ ਪੜ੍ਹਾਈ
[ਸੋਧੋ]- R. Buniy, S. Hsu and A. Zee On the origin of probability in quantum mechanics (2006) Archived 2012-04-27 at the Wayback Machine.
- Nakli itihaas jo likheya geya hai kade na vaapriya jo ohna de base te, saade te saada itihaas bna ke ehna ne thop dittiyan. anglo sikh war te ek c te 3-4 jagaha te kiwe chal rahi c ikko war utto saal 1848 jdo angrej sara punjab 1845 ch apne under kar chukke c te oh 1848 ch kihna nal jang ladd rahe c. Script error: The function "citation198.168.27.221 14:54, 13 ਦਸੰਬਰ 2024 (UTC)'"`UNIQ--ref-0000000F-QINU`"'</ref>" does not exist. The book's author makes leading contributions to the measurement problem, observer theory, and consciousness.
ਬਾਹਰੀ ਲਿੰਕ
[ਸੋਧੋ]- The Quantum Measurement Problem ਦੋ ਪੇਸ਼ਕਸ਼ਾਂ: a non-technical and a more technical presentation.