ਲੌਰੰਟਜ਼ ਰੂਪਾਂਤ੍ਰਨ
ਗਰੁੱਪ O(3,1) ਦੇ ਐਲੀਮੈਂਟਾਂ ਨੂੰ (ਹੋਮੋਜੀਨੀਅਸ) ਲੌਰੰਟਜ਼ ਟਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਹੋਰ ਜਿਆਦਾ ਭੌਤਿਕੀ ਮੋੜ ਨਾਲ ਹੋਰ ਤਰੀਕੇ ਖੋਜਣ ਲਈ ਦੇਖੋ ਲੌਰੰਟਜ਼ ਟਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਦੀਆਂ ਡੈਰੀਵੇਸ਼ਨਾਂ ।
ਪੋਆਇਨਕੇਅਰ ਗਰੁੱਪ ਅੰਤਰਾਲ ਨੂੰ ਸੁਰੱਖਿਅਤ ਰੱਖਣ ਵਾਲੇ ਸਾਰੇ ਪਰਿਵਰਤਨਾਂ ਦਾ ਗਰੁੱਪ ਹੈ। ਅੰਤਰਾਲ (ਇੰਟਰਵਲ) ਨੂੰ 4-ਅਯਾਮਾਂ ਵਿੱਚ ਟਰਾਂਸਲੇਸ਼ਨ ਗਰੁੱਪ ਰਾਹੀਂ ਸੁਰੱਖਿਅਤ ਹੁੰਦਾ ਅਸਾਨੀ ਨਾਲ ਦੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਹੋਰ ਪਰਿਵਰਤਨ ਉਹ ਹੁੰਦੇ ਹਨ ਜੋ ਅੰਤਰਾਲ ਨੂੰ ਸੁਰੱਖਿਅਤ ਰੱਖਦੇ ਹਨ ਅਤੇ ਉਰਿਜਿਨ ਨੂੰ ਫਿਕਸ ਰੱਖਦੇ ਹਨ । ਮਿੰਕੋਵਸਕੀ ਮੀਟ੍ਰਿਕ ਨਾਲ ਜੁੜੇ ਬਾਇਲੀਨੀਅਰ ਅਕਾਰ ਦੇ ਦਿੱਤੇ ਹੋਣ ਤੇ, ਕਲਾਸੀਕਲ ਗਰੁੱਪਾਂ ਦੀ ਥਿਊਰੀ (ਖਾਸ ਕਰਕੇ ਪਰਿਭਾਸ਼ਾ) ਤੋਂ ਢੁਕਵੇਂ ਗਰੁੱਪ ਦਾ ਪਤਾ ਚਲਦਾ ਹੈ। ਲਿੰਕ ਕੀਤੇ ਆਰਟੀਕਲ ਵਿੱਚ, ਮੈਟ੍ਰਿਕਸ Φ ਦੇ ਨਾਲ η (ਇਸਦੀ ਮੈਟ੍ਰਿਕਸ ਪ੍ਰਸਤੁਤੀ ਵਿੱਚ) ਨੂੰ ਪਛਾਣਨਾ ਚਾਹੀਦਾ ਹੈ।
ਗਣਿਤ[ਸੋਧੋ]
ਸਰਲਤਮ ਲੌਰੰਟਜ਼ ਟਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਲੌਰੰਟਜ਼ ਬੂਸਟ ਹੈ। ਇਸ਼ਾਰੇ ਵਜੋਂ, x-ਦਿਸ਼ਾ ਵਿੱਚ ਇੱਕ ਬੂਸਟ ਇਸਤਰਾਂ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ;
ਜਿੱਥੇ
ਨੂੰ ਇੱਕ ਲੌਰੰਟਜ਼ ਫੈਕਟਰ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਅਤੇ
- ਹੁੰਦਾ ਹੈ|
ਹੋਰ ਲੌਰੰਟਜ਼ ਟਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਸ਼ੁੱਧ ਰੋਟੇਸ਼ਨਲ ਹੁੰਦੀਆਂ ਹਨ, ਅਤੇ ਇਸ ਕਰਕੇ O(3,1) ਦੇ ਸਬਗਰੁੱਪ SO(3) ਦੇ ਐਲੀਮੈਂਟ ਵੀ । ਇੱਕ ਸਧਾਰਣ ਹੋਮੋਜੀਨੀਅਸ ਲੌਰੰਟਜ਼ ਟਰਾਂਸਫੋਰਮੇਸ਼ਨ ਸ਼ੁੱਧ ਬੂਸਟ ਅਤੇ ਸ਼ੁੱਧ ਰੋਟੇਸ਼ਨ ਦਾ ਗੁਣਨਫਲ ਹੁੰਦੀ ਹੈ। ਇੱਕ ਇਨਹੋਮੋਜੀਨੀਅਸ ਲੌਰੰਟਜ਼ ਟਰਾਂਸਫੋਰਮੇਸ਼ਨ ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਵਿੱਚ ਇੱਕ ਬਦਲਾਓ ਰਾਹੀਂ ਹੋਈ ਹੋਮੋਜੀਨੀਅਸ ਟਰਾਂਸਫੋਰਮੇਸ਼ਨ ਹੁੰਦੀ ਹੈ। ਵਿਸ਼ੇਸ਼ ਟਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ (ਪਰਿਵਰਤਨ) ਉਹ ਹੁੰਦੀਆਂ ਹਨ ਜੋ ਸਪੇਸ ਨਿਰਦੇਸ਼ਾਂਕਾਂ ਅਤੇ ਟਾਈਮ ਨਿਰਦੇਸ਼ਾਂਕਾਂ ਨੂੰ ਕ੍ਰਮਵਾਰ ਉਲਟਾ ਦਿੰਦੇ ਹਨ, ਜਾਂ ਦੋਵਾਂ ਨੂੰ (PT) ।
ਮਿੰਕੋਵਸਕੀ ਸਪੇਸ ਵਿੱਚ ਸਾਰੇ ਦੇ ਸਾਰੇ ਚਾਰੇ ਵੈਕਟਰ ਲੌਰੰਟਜ਼ ਟਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਅਧੀਨ ਉਸੇ ਫਾਰਮੂਲੇ ਮੁਤਾਬਿਕ ਬਦਲ ਜਾਂਦੇ ਹਨ । ਮਿੰਕੋਵਸਕੀ ਡਾਇਗਰਾਮ ਲੌਰੰਟਜ਼ ਟਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਨੂੰ ਸਮਝਾਉਂਦਾ ਹੈ।
ਫੁਟਨੋਟਸ[ਸੋਧੋ]
ਨੋਟਸ[ਸੋਧੋ]
ਹਵਾਲੇ[ਸੋਧੋ]
ਵੈਬਸਾਈਟਾਂ[ਸੋਧੋ]
- O'Connor, John J.; Robertson, Edmund F. (1996), A History of Special Relativity, Archived from the original on 2013-12-09, https://web.archive.org/web/20131209071558/http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Special_relativity.html, retrieved on 8 ਜੁਲਾਈ 2018
- Brown, Harvey R. (2003), Michelson, FitzGerald and Lorentz: the Origins of Relativity Revisited, http://philsci-archive.pitt.edu/id/eprint/987
ਪਰਚੇ[ਸੋਧੋ]
- Cushing, J. T. (1967). "Vector Lorentz transformations". American Journal of Physics. 35: 858–862. Bibcode:1967AmJPh..35..858C. doi:10.1119/1.1974267.
- Macfarlane, A. J. (1962). "On the Restricted Lorentz Group and Groups Homomorphically Related to It". Journal of Mathematical Physics. 3 (6): 1116–1129. Bibcode:1962JMP.....3.1116M. doi:10.1063/1.1703854.
- Rothman, Tony (2006), "Lost in Einstein's Shadow", American Scientist 94 (2): 112f., http://www.americanscientist.org/libraries/documents/200622102452_866.pdf
- Darrigol, Olivier (2005), "The Genesis of the theory of relativity", Séminaire Poincaré 1: 1–22, doi:, http://www.bourbaphy.fr/darrigol2.pdf
- Macrossan, Michael N. (1986), "A Note on Relativity Before Einstein", Brit. Journal Philos. Science 37: 232–34, doi:, http://espace.library.uq.edu.au/view.php?pid=UQ:9560
- Poincaré, Henri (1905), "On the Dynamics of the Electron", Comptes rendus hebdomadaires des séances de l'Académie des sciences 140: 1504–1508
- Einstein, Albert (1905), "Zur Elektrodynamik bewegter Körper", Annalen der Physik 322 (10): 891–921, doi: , Bibcode: 1905AnP...322..891E, http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_891-921.pdf. See also: English translation.
- Einstein, A. (1916). "Relativity: The Special and General Theory" (PDF). Retrieved 2012-01-23.
- Ungar, A. A. (1988). "Thomas rotation and the parameterization of the Lorentz transformation group". Foundations of Physics Letters. Kluwer Academic Publishers-Plenum Publishers. 1 (1): 55–89. Bibcode:1988FoPhL...1...57U. ISSN 0894-9875. doi:10.1007/BF00661317. (subscription required (help)). eqn (55).
- Ungar, A. A. (1989). "The relativistic velocity composition paradox and the Thomas rotation". Foundations of Physics. 19: 1385–1396. Bibcode:1989FoPh...19.1385U. doi:10.1007/BF00732759.[ਮੁਰਦਾ ਕੜੀ]
- Ungar, A. A. (2000). "The relativistic composite-velocity reciprocity principle". Foundations of Physics. Springer. 30 (2): 331–342. CiteSeerX 10.1.1.35.1131
.
- Mocanu, C. I. (1986). "Some difficulties within the framework of relativistic electrodynamics". Archiv für Elektrotechnik. Springer. 69: 97–110. doi:10.1007/bf01574845.
- Mocanu, C. I. (1992). "On the relativistic velocity composition paradox and the Thomas rotation". Foundations of Physics. Plenum. 5: 443–456. Bibcode:1992FoPhL...5..443M. doi:10.1007/bf00690425.
- Weinberg, S. (2002). The Quantum Theory of Fields, vol I. Cambridge University Press. ISBN 0-521-55001-7.
ਕਿਤਾਬਾਂ[ਸੋਧੋ]
- Young, H. D.; Freedman, R. A. (2008). University Physics – With Modern Physics (12th ed.). ISBN 0-321-50130-6.
- Halpern, A. (1988). 3000 Solved Problems in Physics. Schaum Series. Mc Graw Hill. p. 688. ISBN 978-0-07-025734-4.
- Forshaw, J. R.; Smith, A. G. (2009). Dynamics and Relativity. Manchester Physics Series. John Wiley & Sons Ltd. pp. 124–126. ISBN 978-0-470-01460-8.
- Wheeler, J. A.; Taylor, E. F (1971). Spacetime Physics. Freeman. ISBN 0-7167-0336-X.
- Wheeler, J. A.; Thorne, K. S.; Misner, C. W. (1973). Gravitation. Freeman. ISBN 0-7167-0344-0.
- Carroll, S. M. (2004). Spacetime and Geometry: An Introduction to General Relativity (illustrated ed.). Addison Wesley. p. 22. ISBN 0-8053-8732-3.
- Grant, I. S.; Phillips, W. R. (2008). "14". Electromagnetism. Manchester Physics (2nd ed.). John Wiley & Sons. ISBN 0-471-92712-0.
- Griffiths, D. J. (2007). Introduction to Electrodynamics (3rd ed.). Pearson Education, Dorling Kindersley,. ISBN 81-7758-293-3.
- Hall, Brian C. (2003). Lie Groups, Lie Algebras, and Representations An Elementary Introduction. Springer Publishing. ISBN 0-387-40122-9.
- Weinberg, S. (2008), Cosmology, Wiley, ISBN 978-0-19-852682-7
- Weinberg, S. (2005), The quantum theory of fields (3 vol.), 1, Cambridge University Press, ISBN 978-0-521-67053-1
- Ohlsson, T. (2011), Relativistic Quantum Physics, Cambridge University Press, ISBN 978-0-521-76726-2
- Goldstein, H. (1980) [1950]. Classical Mechanics (2nd ed.). Reading MA: Addison-Wesley. ISBN 0-201-02918-9.
- Jackson, J. D. (1975) [1962]. "Chapter 11". Classical Electrodynamics (2nd ed.). John Wiley & Sons. pp. 542–545. ISBN 0-471-43132-X.
- Landau, L. D.; Lifshitz, E. M. (2002) [1939]. The Classical Theory of Fields. Course of Theoretical Physics. 2 (4th ed.). Butterworth–Heinemann. pp. 9–12. ISBN 0 7506 2768 9.
- Feynman, R. P.; Leighton, R. B.; Sands, M. (1977) [1963]. "15". The Feynman Lectures on Physics. 1. Addison Wesley. ISBN 0-201-02117-X.
- Feynman, R. P.; Leighton, R. B.; Sands, M. (1977) [1964]. "13". The Feynman Lectures on Physics. 2. Addison Wesley. ISBN 0-201-02117-X.
- Misner, Charles W.; Thorne, Kip S.; Wheeler, John Archibald (1973). Gravitation. San Francisco: W. H. Freeman. ISBN 978-0-7167-0344-0.
- Rindler, W. (2006) [2001]. "Chapter 9". Relativity Special, General and Cosmological (2nd ed.). Dallas: Oxford University Press. ISBN 978-0-19-856732-5.
- Ryder, L. H. (1996) [1985]. Quantum Field Theory (2nd ed.). Cambridge: Cambridge University Press. ISBN 978-0521478144.
- Sard, R. D. (1970). Relativistic Mechanics - Special Relativity and Classical Particle Dynamics. New York: W. A. Benjamin. ISBN 978-0805384918.
- R. U. Sexl, H. K. Urbantke (2001) [1992]. Relativity, Groups Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics. Springer. ISBN 978-3211834435.
- Gourgoulhon, Eric (2013). Special Relativity in General Frames: From Particles to Astrophysics. Springer. p. 213. ISBN 978-3-642-37276-6.
- Chaichian, Masud; Hagedorn, Rolf (1997). Symmetry in quantum mechanics:From angular momentum to supersymmetry. IoP. p. 239. ISBN 0-7503-0408-1.
- Landau, L.D.; Lifshitz, E.M. (2002) [1939]. The Classical Theory of Fields. Course of Theoretical Physics. 2 (4th ed.). Butterworth–Heinemann. ISBN 0 7506 2768 9.
ਹੋਰ ਲਿਖਤਾਂ[ਸੋਧੋ]
- Einstein, Albert (1961), Relativity: The Special and the General Theory, New York: Three Rivers Press (published 1995), ISBN 0-517-88441-0, http://www.marxists.org/reference/archive/einstein/works/1910s/relative/
- Ernst, A.; Hsu, J.-P. (2001), "First proposal of the universal speed of light by Voigt 1887", Chinese Journal of Physics 39 (3): 211–230, Bibcode: 2001ChJPh..39..211E, Archived from the original on 2011-07-16, https://web.archive.org/web/20110716083015/http://psroc.phys.ntu.edu.tw/cjp/v39/211.pdf
- Thornton, Stephen T.; Marion, Jerry B. (2004), Classical dynamics of particles and systems (5th ed.), Belmont, [CA.]: Brooks/Cole, pp. 546–579, ISBN 0-534-40896-6
- Voigt, Woldemar (1887), "Über das Doppler'sche princip", Nachrichten von der Königlicher Gesellschaft den Wissenschaft zu Göttingen 2: 41–51
ਬਾਹਰੀ ਲਿੰਕ[ਸੋਧੋ]
![]() |
Wikisource has original works on the topic: ਰਿਲੇਟੀਵਿਟੀ |
![]() |
ਵਿਕੀਬੂਕਸ ਉੱਤੇ ਇੱਕ ਕਿਤਾਬ ਹੈ ਇਸ ਵਿਸ਼ੇ ਬਾਰੇ |
- Derivation of the Lorentz transformations. This web page contains a more detailed derivation of the Lorentz transformation with special emphasis on group properties.
- The Paradox of Special Relativity Archived 2006-12-06 at the Wayback Machine.. This webpage poses a problem, the solution of which is the Lorentz transformation, which is presented graphically in its next page.
- Relativity – a chapter from an online textbook
- Warp Special Relativity Simulator. A computer program demonstrating the Lorentz transformations on everyday objects.
- Animation clip on ਯੂਟਿਊਬ visualizing the Lorentz transformation.
- Lorentz Frames Animated from John de Pillis. Online Flash animations of Galilean and Lorentz frames, various paradoxes, EM wave phenomena, etc.